当前位置:文档之家› 基因测序课件

基因测序课件

基因测序课件

基因测序课件

DNA测序原理和方法.

DNA测序原理和方法 DNA序列测定分手工测序和自动测序,手工测序包括Sanger双脱氧链终止法和Maxam-Gilbert化学降解法。自动化测序实际上已成为当今DNA序列分析的主流。美国PE ABI公司已生产出373型、377型、310型、3700和3100型等DNA测序仪,其中310型是临床检测实验室中使用最多的一种型号。本实验介绍的是ABI PRISM 310型DNA测序仪的测序原理和操作规程。 【原理】ABI PRISM 310型基因分析仪(即DNA测序仪),采用毛细管电泳技术取代传统的聚丙烯酰胺平板电泳,应用该公司专利的四色荧光染料标记的ddNTP(标记终止物法),因此通过单引物PCR测序反应,生成的PCR产物则是相差1个碱基的3''''末端为4种不同荧光染料的单链DNA混合物,使得四种荧光染料的测序PCR产物可在一根毛细管内电泳,从而避免了泳道间迁移率差异的影响,大大提高了测序的精确度。由于分子大小不同,在毛细管电泳中的迁移率也不同,当其通过毛细管读数窗口段时,激光检测器窗口中的CCD(charge-coupled device)摄影机检测器就可对荧光分子逐个进行检测,激发的荧光经光栅分光,以区分代表不同碱基信息的不同颜色的荧光,并在CCD摄影机上同步成像,分析软件可自动将不同荧光转变为DNA序列,从而达到DNA测序的目的。分析结果能以凝胶电泳图谱、荧光吸收峰图或碱基排列顺序等多种形式输出。 它是一台能自动灌胶、自动进样、自动数据收集分析等全自动电脑控制的测定DNA片段的碱基顺序或大小和定量的高档精密仪器。PE公司还提供凝胶高分子聚合物,包括DNA测序胶(POP 6)和GeneScan胶(POP 4)。这些凝胶颗粒孔径均一,避免了配胶条件不一致对测序精度的影响。它主要由毛细管电泳装置、Macintosh电脑、彩色打印机和电泳等附件组成。电脑中则包括资料收集,分析和仪器运行等软件。它使用最新的CCD摄影机检测器,使DNA 测序缩短至2.5h,PCR片段大小分析和定量分析为10~40min。 由于该仪器具有DNA测序,PCR片段大小分析和定量分析等功能,因此可进行DNA测序、杂合子分析、单链构象多态性分析(SSCP)、微卫星序列分析、长片段PCR、RT-PCR(定量PCR)等分析,临床上可除进行常规DNA测序外,还可进行单核苷酸多态性(SNP)分析、基因突变检测、HLA配型、法医学上的亲子和个体鉴定、微生物与病毒的分型与鉴定等。【试剂与器材】 1.BigDye测序反应试剂盒主要试剂是BigDye Mix,内含PE专利四色荧光标记的ddNTP 和普通dNTP,AmpliTaq DNA polymerase FS,反应缓冲液等。 2.pGEM-3Zf (+) 双链DNA对照模板0.2g/L,试剂盒配套试剂。 3.M13(-21)引物TGTAAAACGACGGCCAGT,3.2μmol/L,即3.2pmol/μl,试剂盒配套试剂。 4.DNA测序模板可以是PCR产物、单链DNA和质粒DNA等。模板浓度应调整在PCR 反应时取量1μl为宜。本实验测定的质粒DNA,浓度为0.2g/L,即200ng/μl。 5.引物需根据所要测定的DNA片段设计正向或反向引物,配制成3.2μmol/L,即3.2pmol/μl。如重组质粒中含通用引物序列也可用通用引物,如M13(-21)引物,T7引物等。 6.灭菌去离子水或三蒸水。 7.0.2ml或和0.5ml的PCR管盖体分离,PE公司产品。 8.3mol/L 醋酸钠(pH5.2) 称取40.8g NaAc·3H2O溶于70ml蒸馏水中,冰醋酸调pH至5.2,定容至100ml,高压灭菌后分装。 9.70%乙醇和无水乙醇。 10.NaAc/乙醇混合液取37.5ml无水乙醇和2.5ml 3mol/L NaAc混匀,室温可保存1年。11.POP 6测序胶ABI产品。

几种常见的基因测序技术的优缺点及应用复习过程

几种常见的基因测序技术的优缺点及应用

随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以 Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不

全基因组重测序数据分析

全基因组重测序数据分析 1. 简介(Introduction) 通过高通量测序识别发现de novo的somatic和germ line 突变,结构变异-SNV,包括重排 突变(deletioin, duplication 以及copy number variation)以及SNP的座位;针对重排突变和SNP的功能性进行综合分析;我们将分析基因功能(包括miRNA),重组率(Recombination)情况,杂合性缺失(LOH)以及进化选择与mutation之间的关系;以及这些关系将怎样使 得在disease(cancer)genome中的mutation产生对应的易感机制和功能。我们将在基因组 学以及比较基因组学,群体遗传学综合层面上深入探索疾病基因组和癌症基因组。 实验设计与样本 (1)Case-Control 对照组设计; (2)家庭成员组设计:父母-子女组(4人、3人组或多人); 初级数据分析 1.数据量产出:总碱基数量、Total Mapping Reads、Uniquely Mapping Reads统计,测序深度分析。 2.一致性序列组装:与参考基因组序列(Reference genome sequence)的比对分析,利用贝叶斯统计模型检测出每个碱基位点的最大可能性基因型,并组装出该个体基因组的一致序列。3.SNP检测及在基因组中的分布:提取全基因组中所有多态性位点,结合质量值、测序深度、重复性等因素作进一步的过滤筛选,最终得到可信度高的SNP数据集。并根据参考基 因组信息对检测到的变异进行注释。 4.InDel检测及在基因组的分布: 在进行mapping的过程中,进行容gap的比对并检测可信的short InDel。在检测过程中,gap的长度为1~5个碱基。对于每个InDel的检测,至少需 要3个Paired-End序列的支持。 5.Structure Variation检测及在基因组中的分布: 能够检测到的结构变异类型主要有:插入、缺失、复制、倒位、易位等。根据测序个体序列与参考基因组序列比对分析结果,检测全基因组水平的结构变异并对检测到的变异进行注释。

DNA测序技术的发展和其最新进展

DNA测序技术的发展及其最新进展 摘要:自从诺贝尔奖得主桑格于1977年发明了第一代DN测序技术以来,DNA测序技术已经作为重要的实验技术广泛的应用于现代生物学研究当中。经过了几十年的发展,DNA测序技术日臻成熟,并且以单分子测序为特点的第三代测序技术也已经诞生。本文主要就每一代测序技术原理和特点及其最新进展做简要介绍。 关键词:DNA测序技术;第三代DNA测序技术;最新进展 The Development and New Progress of DNA Sequencing Technology Abstract: Since Nobel Prize Winner Sanger have founded the first generation of DNA Sequence technology in 1977, DNA sequencing technology has been widely used in modern biological researches as an important experimental. Over decades of year’s development, DNA sequence technology mature gradually and the third generation sequencing technologies characterized by single-molecule sequencing have also emerged. The mechanisms and features of each generation of sequencing technology and their latest progress will be discussed here. Key Words: DNA Sequence technology ; third generation DNA sequencing ;latest development 1.引言 DNA测序技术是分子生物学研究中最常用的技术,它的出现极大地推动了生物学的发展。自从1953年Watson和Crick发现DNA双螺旋结构后[1],人类就开始了对DNA序列的探索,在世界各地掀起了DNA测序技术的热潮。1977年Maxam和Gilbert报道了通过化学降解测定DNA序列的方法[2]。同一时期,Sanger发明了双脱氧链终止法[3]。20世纪90年代初出现的荧光自动测序技术将DNA测序带入自动化测序的时代。这些技术统称为第一代DNA测序技术。最近几年发展起来的第二代DNA测序技术则使得DNA测序进入了高通量、低成本的时代。目前,基于单分子读取技术的第三代测序技术已经出现,该技术测定DNA序列更快,并有望进一步降低测序成本,推进相关领域生物学研究。本文主要介绍DNA测序技术的发展历史及不同发展阶段各种主要测序技术的特点,并针对目前新一代DNA测序技术及目前国际DNA测序最新进展做简要综述。

基因测序技术的优缺点及应用

基因测序技术的优缺点及应用 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以 Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到 2005 年,以Illumina 公司的 Solexa技术和 ABI 公司的 SOLiD 技术为标志的新一代测序 (next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过 NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着 NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用 NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过 NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种 DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和 Walter Gibert 发明了 Sanger 测序法,并在此后的 10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当 DNA 链加入分子 ddNTP,延伸便终止。每一次 DNA 测序是由 4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的 DNA 片段存在于反应体系中,具有单个碱基差别的 DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用 Sanger 直接测序 FGFR 2 基因证实单基因 Apert 综合征和直接测序 TCOF1 基因可以检出多达 90% 的

全基因组从头测序(de novo测序)

全基因组从头测序(de novo测序) http://wenku.baidu.com/view/351686f19e3143323968936a.html 从头测序即de novo 测序,不需要任何参考序列资料即可对某个物种进行测序,用生物信息学分析方法进行拼接、组装,从而获得该物种的基因组序列图谱。利用全基因组从头测序技术,可以获得动物、植物、细菌、真菌的全基因组序列,从而推进该物种的研究。一个物种基因组序列图谱的完成,意味着这个物种学科和产业的新开端!这也将带动这个物种下游一系列研究的开展。全基因组序列图谱完成后,可以构建该物种的基因组数据库,为该物种的后基因组学研究搭建一个高效的平台;为后续的基因挖掘、功能验证提供DNA序列信息。华大科技利用新一代高通量测序技术,可以高效、低成本地完成所有物种的基因组序列图谱。包括研究内容、案例、技术流程、技术参数等,摘自深圳华大科技网站 http://www.bgitechsolutions.cn/service-solutions/ngs/genomics/de-novo-sequencing/ 技术优势: 高通量测序:效率高,成本低;高深度测序:准确率高;全球领先的基因组组装软件:采用华大基因研究院自主研发的SOAPdenovo软件;经验丰富:华大科技已经成功完成上百个物种的全基因组从头测序。 研究内容: 基因组组装■K-mer分析以及基因组大小估计;■基因组杂合模拟(出现杂合时使用); ■初步组装;■GC-Depth分布分析;■测序深 度分析。基因组注释■Repeat注释; ■基因预测;■基因功能注释;■ ncRNA 注释。动植物进化分析■基因家族鉴定(动物TreeFam;植物OrthoMCL);■物种系统发育树构建; ■物种分歧时间估算(需要标定时间信息);■基因组共线性分析; ■全基因组复制分析(动物WGAC;植物WGD)。微生物高级分析 ■基因组圈图;■共线性分析;■基因家族分析; ■CRISPR预测;■基因岛预测(毒力岛); ■前噬菌体预测;■分泌蛋白预测。 熊猫基因组图谱Nature. 2010.463:311-317. 案例描述 大熊猫有21对染色体,基因组大小2.4 Gb,重复序列含量36%,基因2万多个。熊猫基因组图谱是世界上第一个完全采用新一代测序技术完成的基因组图谱,样品取自北京奥运会吉祥物大熊猫“晶晶”。部分研究成果测序分析结果表明,大熊猫不喜欢吃肉主要是因为T1R1基因失活,无法感觉到肉的鲜味。大熊猫基因组仍然具备很高的杂合率,从而推断具有较高的遗传多态性,不会濒于灭绝。研究人员全面掌握了大熊猫的基因资源,对其在分子水平上的保护具有重要意义。 黄瓜基因组图谱黄三文, 李瑞强, 王俊等. Nature Genetics. 2009. 案例描述国际黄瓜基因组计划是由中国农业科学院蔬菜花卉研究所于2007年初发起并组织,并由深圳华大基因研究院承担基因组测序和组装等技术工作。部分研究成果黄瓜基因组是世界上第一个蔬菜作物的基因组图谱。该项目首次将传

我国基因测序行业研究

我国基因测序行业研究 (一)行业政策 当前,生物技术在引领未来经济社会发展中的战略地位日益凸显,现代生物 技术的一系列重要进展和重大突破正在加速向应用领域渗透。我国政府为加快推进生物技术与生物技术产业发展,打造国家科技核心竞争力和产业优势,对于生物产业,尤其是基因测序领域,加大了产业扶持力度,先后推出了多项相关政策、 规划等产业指导。 (1)中华人民共和国国民经济和社会发展第十三个五年规划纲要 2016 年3 月,全国人民代表大会发布“十三五”规划指出,支持新一代信 息技术、生物技术、精准医疗等新兴前沿领域创新和产业化,形成一批新增长点。 加强前瞻布局,在生命科学等领域,培育一批战略性产业。加快发展合成生物和 再生医学技术,打造未来发展新优势。战略性新兴产业发展行动指出,加速推动 基因组学等生物技术大规模应用,建设网络化应用示范体系,推进个性化医疗, 新型药物,生物育种等新一代生物技术产品和服务的规模化发展,推进基因库细

胞库等基础平台建设。 (2)“十三五”国家科技创新规划 2016 年7 月,国务院印发《关于“十三五”国家科技创新规划的通知》,规划指出:加快推进基因组学新技术、合成生物技术、生物大数据等生命科学前 沿关键技术突破,加强生物产业发展及生命科学研究核心关键装备研发,提升我 国生物技术前沿领域原创水平,抢占国际生物技术竞争制高点;把握生物技术和 信息技术融合发展机遇,建立百万健康人群和重点疾病病人的前瞻队列,建立多 层次精准医疗知识库体系和国家生物医学大数据共享平台,重点攻克新一代基因 测序技术、组学研究和大数据融合分析技术等精准医疗核心关键技术,开发一批 重大疾病早期筛查、分子分型、个体化治疗、疗效预测及监控等精准化应用解决 方案和决策支持系统,推动医学诊疗模式变革。 (3)促进和规范健康医疗大数据应用发展的指导意见 2016 年6 月,国务院办公厅发布《关于促进和规范健康医疗大数据应用发 展的指导意见》,意见指出:依托现有资源建设一批心脑血管、肿瘤、老年病和

几种常见的基因测序技术的优缺点及应用

几种常见的基因测序技术的优缺点及应用 发布时间:2014-07-19 来源:毕业论文网 随着人类基因组计划的完成,人类对自身遗传信息的了解和掌握有了前所未有的进步。与此同时,分子水平的基因检测技术平台不断发展和完善,使得基因检测技术得到了迅猛发展,基因检测效率不断提高。从最初第一代以Sanger 测序为代表的直接检测技术和以连锁分析为代表的间接测序技术,到2005 年,以Illumina 公司的Solexa技术和ABI 公司的SOLiD 技术为标志的新一代测序(next-generation sequencing,NGS) 的相继出现,测序效率明显提升,时间明显缩短,费用明显降低,基因检测手段有了革命性的变化。其技术正向着大规模、工业化的方向发展,极大地提高了基因检测的检出率,并扩展了疾病在基因水平的研究范围。2009 年 3 月,约翰霍普金斯大学的研究人员在《Science》杂志上发表了通过NGS外显子测序技术,发现了一个新的遗传性胰腺癌的致病基因PALB2,标志着NGS 测序技术成功应用于致病基因的鉴定研究。同年,《Nature》发表了采用NGS 技术发现罕见弗里曼谢尔登综合征MYH3 致病基因突变和《Nat Genet》发表了遗传疾病米勒综合征致病基因。此后,通过NGS 技术,与遗传相关的致病基因不断被发现,NGS 技术已成为里程碑式的进步。2010 年,《Science》杂志将这一技术评选为当年“十大科学进展”。 近两年,基因检测成为临床诊断和科学研究的热点,得到了突飞猛进和日新月异的发展,越来越多的临床和科研成果不断涌现出来。同时,基因检测已经从单一的遗传疾病专业范畴扩展到复杂疾病和个体化应用更加广阔的领域,其临床检测范围包括高危疾病的新生儿筛查、遗传疾病的诊断和基因携带的检测以及基因药物检测用于指导个体化用药剂量、选择和药物反应等诸多方面的研究。目前,基因检测在临床诊断和医学研究的应用正越来越受到医生的普遍重视和引起研究人员的极大的兴趣。 本文介绍了几种DNA 水平基因检测常见的方法,比较其优缺点和在临床诊断和科学研究中的应用,对指导研究生和临床医生课外学习,推进临床科研工作和提升科研教学水平有着指导意义。 1、第一代测序 1.1 Sanger 测序采用的是直接测序法。1977年,Frederick Sanger 等发明了双脱氧链末端终止法,这一技术随后成为最为常用的基因测序技术。2001 年,Allan Maxam 和Walter Gibert 发明了Sanger 测序法,并在此后的10 年里成为基因检测的金标准。其基本原理即双脱氧核苷三磷酸(dideoxyribonucleoside triphosphate,ddNTP) 缺乏PCR 延伸所需的 3'-OH,因此每当DNA 链加入分子ddNTP,延伸便终止。每一次DNA 测序是由4个独立的反应组成,将模板、引物和 4 种含有不同的放射性同位素标记的核苷酸的ddNTP 分别与DNA 聚合酶混合形成长短不一的片段,大量起始点相同、终止点不同的DNA 片段存在于反应体系中,具有单个碱基差别的DNA 序列可以被聚丙烯酰胺变性凝胶电泳分离出来,得到放射性同位素自显影条带。依据电泳条带读取DNA 双链的碱基序列。 人类基因组的测序正是基于该技术完成的。Sanger 测序这种直接测序方法具有高度的准确性和简单、快捷等特点。目前,依然对于一些临床上小样本遗传疾病基因的鉴定具有很高的实用价值。例如,临床上采用Sanger 直接测序FGFR 2 基因证实单基因Apert 综合征和直接测序TCOF1 基因可以检出多达90% 的与Treacher Collins 综合征相关的突变。值得注意的是,Sanger 测序是针对已知致病基因的突变位点设计引物,进行PCR 直接扩增测序。

2017年二代基因测序市场分析

二代基因测序市场分析 目录 一、二代测序资本市场融资火爆 二、二代测序为何如此受市场追捧? 三、测序市场当前现状及存在的问题 四、未来趋势判断及启示 一、二代测序资本市场融资火爆 在整个体外诊断市场,生化和免疫经过多年的发展,市场格局已基本形成;分子诊断目前市场规模还不大,但增速较快,潜力被广泛看好。在分子诊断的不同技术平台中,又以近两年随着“精准医疗”概念迅速崛起的二代测序(NGS)领域最受关注,国内就存在上百家同类企业,且资本市场融资火爆,估值也是居高不下。简单梳理了几个较有代表性的融资案例如下: 1、华大基因 华大基因是国内基因测序领域的领导者,在NGS产业链上、中、下游均有所布局。2012 年-2015 上半年营收分别为7.95亿、10.47亿、11.32亿、5.65亿,净利润对应 8500万、1.73亿、5900万,8200万。2015 年最近一轮融资引进 PE机构以 191 亿估值作为增资及转让的定价基础,引入和玉高林及中国人寿,融资20 亿元,投后估值 210亿。而华大基因按照其IPO的计划定价得出估值约为156亿元,相当于相较一级市场的估值,华大基因的估值实际已缩水超过50亿元,出现了一二级市场的倒挂。

2、贝瑞和康 贝瑞和康成立于 2010 年,利用二代测序平台,在 NIPT 领域占据了主要的市场,全国 100 家医疗机构获得 NIPT 试点资格,70%使用贝瑞和康的仪器及试剂。2015 年底最近一轮融资估值 100 亿,融资金额 3.3 亿左右,引入了海通兴泰、尚融宁波、中信锦绣等机构;2016 年 12 月,上市公司天兴仪表作价 43 亿元购买贝瑞和康 100%股权,若交易完成,贝瑞和康将成功借壳上市。值得关注的是,贝瑞和康 43 亿的借壳价与此前一级市场百亿估值相比,有着较大的出入,同样出现了一二级市场的倒挂,其原因在于市场对贝瑞和康的预期降低还是之前 PE入股时估值过高,也是值得思考推敲的。 3、碳云智能 2015 年 10 月成立,由原华大基因 CEO 王俊等联合创办,定位在“医疗+人工智能”方向,运用人工智能技术进行数据处理,目标是打造智能健康管理大数据平台。成立半年左右,即 2016 年 3 月完成 A 轮融资,融资金额 10 亿元,估值约 65 亿元,腾讯、中源协和、天府集团等机构领投。碳云智能所锚定的大数据积累及解读这个细分相对而言存在一定的门槛,是未来的一个发展方向,但存在的难度及障碍也很大,还有很漫长的路要走。天使期就以如此高的估值融到资更多的还是王俊的“名人”效应,但即使是 65 亿的高估值,王俊依然表示:这只是碳云智能最便宜的时候。 4、燃石医学 2014 年成立,定位于基于 NGS 平台的肿瘤精准医疗基因诊断领域,产品线包括基于组织层面的靶向药物用药指导、易感基因筛查及液体活检,目前以 LDT的形式进行检测。2015 年下半年曾以 15 亿估值获投资机构 1.5 亿元投资,今年正以 30 亿估值融资 2 亿元,进展未知。

基因检测行业调研

基因检测行业调研 继上次基因检测产业调研之后,这两周我们再次调研了几家基因检测公司,并且拜访了一些行业专家,现将调研的重点内容整理如下,欢迎大家交流探讨。 一、基因检测公司梳理 目前全国涉及基因检测概念的公司有200余家,按照业务范围划分,这些公司可以分为:①最上游的基因检测仪器开发企业(测序仪、芯片扫描仪、PCR设备),②提供样本处理试剂和耗材的中上游企业(建库试剂盒、检测试剂盒、工具酶、基因芯片),③提供第三方基因检测服务的中游企业,④提供测序数据存储、分析和出具报告的下游企业,⑤还有将这三部分整合起来提供CRO服务的商业公司,当然如果公司研发实力和经济实力允许,大部分公司会选择向上下游产业链延伸,进一步提升自己的盈利能力。 按照基因检测公司的服务内容,主要可以分为四类:科研服务、第三方临床基因检测服务、直接面向个人的检测服务、非医疗基因检测服务(例如食品、环境、刑侦等方面的应用)。 1 科研中的基因检测服务又分为两种情况,第一种是纯科研服务,检测目的纯粹是满足科研需要,不作为医学诊断的依据;第二种是以科研的名义为患者提供医学诊断服务,医生在其中起主导作用,推荐有需要的患者去做基因检测,医生在其中所获得的好处是得到用药指导依据、科研数据、获得销售提成,这是当前肿瘤基因测序普遍采用的手段,因为目前国内还没有一种获批临床的肿瘤高通量检测试剂盒,只能以科研的形式变相的进行医学诊断从而获取收益。纯科研基因检测市场在百亿级别。 2 第三方临床检测机构是指批准为医院提供检测外包服务的独立医学检验实验室,大部分第三方临检机构都能开展分子诊断服务(需通过临检中心的PCR实验室认证),例如QPCR、ddPCR、基因芯片等,但是高通量测序在临床检测上的应用当前受到限制,只有在试点名单上的机构才能出具正式的临检报告,目前出台了第一批四个领域的试点名单,分别是遗传病诊断、产前筛查与诊断、植入前胚胎遗传学诊断、肿瘤基因测序,试点单位名单由卫计委医政医管局和妇幼司共同制定。临床基因检测的市场空间在千亿级别。 3 提供面向个人基因检测服务的商业公司,提供的是非诊断性基因检测,例如23andMe是美国本地唯一一家被FDA批准的能够直接向个人提供基于基因检测分析服务公司,业务范围也仅仅提供祖源分析、遗传病筛查、酒精耐受、基因寻亲这四类遗传分析服务,23andMe此前的疾病风险筛查和药物过敏分析被禁止,而我国有许多直接面向个人的基因检测商业机构,业务范围甚至包括疾病风险、天赋基因、个性特征分析等一系列基因分析服务,未来有加强监管和整合的压力。商业化B2C基因检测的市场空间在十亿级别。

人类全基因组测序

1 技术优势 全基因组测序(Whole Genome Sequencing,WGS)是利用高通量测序平台对人类不同个体或群体进行全基因组测序,并在个体或群体水平上进行生物信息分析。可全面挖掘DNA 水平的遗传变异,为筛选疾病的致病及易感基因,研究发病及遗传机制提供重要信息。 全基因组测序 平台优势 HiSeq X 测序平台 读长:PE150 通量:1.8T/run 测序周期:3 天 专为人全基因组测序准备、测序周期短、通量高

生物信息分析 技术路线 技术参数 样品要求 样本类型:DNA 样品 样本总量:≥1.0 μg DNA (提取自新鲜及冻存样本) ≥1.5 μg DNA (提取自FFPE 样本)样品浓度:≥ 20 ng/μl 测序平台及策略HiSeq X PE150 测序深度 肿瘤:癌组织(50X),癌旁组织/血液样本(30X)遗传病:30~50 X 项目周期37天

3 案例解析 该研究选取3个家系中6个患者和1个正常个体,首先使用基因芯片寻找纯合突变位点,然后对其中无亲缘关系的2例患者采用全基因组测序研究,在2例患者非编码区域均发现相同的变异,10号染色体PTF1A 末端发生一个点突变(chr10:23508437 A>G),且变异在患病人群和细胞试验中均得到了验证。研究解释了生长发育启动子隐性变异是罕见孟德尔遗传病的常见致病原因,同时说明许多疾病的致病突变也可能位于非编码区。 图1 检出的变异信息 智力障碍是影响新生儿心智发育的一类疾病。这项研究选取50个经过基因芯片和全外显子测序未确诊致病因子的trio 家系,全基因组测序检出84个de novo SNVs 和8个de novo CNVs,及一些结构变异(如VPS13B、STAG1、IQSEC2-TENM3),检出率为42%。揭示编码区的de novo SNVs 和de novo CNVs 是导致智力障碍的主要因素,全基因组测序可以作为可靠的遗传性检测应用工具。 案例一 单基因病研究——全基因组测序鉴定PTF1A末端增强子常染色体隐性突变导致胰腺 发育不全[1] 案例二 复杂疾病研究——全基因组测序解析智力障碍的主要致病因素[2] 图2 PTF1A 的家系图谱

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理:

宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = , 260/230 = ,电泳检测DNA 应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先通过PCR将16S/18S 序列扩增出来,再将其连接到克隆载体上,导入感受态细胞,涂平板做蓝白斑筛选,选出阳性克隆提质粒,对质粒进行测序反应,测序反应后纯化后用ABI 3130或ABI 3730进行毛细管电泳测序。 由于其测序准确率比较高,而通量非常低,现通常用做二代测序结果的验证。454 Platform: 454平台主要包括两种测序系统:454 GS FLX+ System和454 GS Junior System。454 GS FLX+ System测序读长可以达到600-1000bp,通量450-700M,GS Junior System测序读长在400bp左右,通量在35M。

我国基因测序行业研究-行业政策、发展状况

我国基因测序行业研究-行业政策、发展状况 (一)行业政策 当前,生物技术在引领未来经济社会发展中的战略地位日益凸显,现代生物技术的一系列重要进展和重大突破正在加速向应用领域渗透。我国政府为加快推进生物技术与生物技术产业发展,打造国家科技核心竞争力和产业优势,对于生物产业,尤其是基因测序领域,加大了产业扶持力度,先后推出了多项相关政策、规划等产业指导。 (1)中华人民共和国国民经济和社会发展第十三个五年规划纲要2016 年3 月,全国人民代表大会发布“十三五”规划指出,支持新一代信 息技术、生物技术、精准医疗等新兴前沿领域创新和产业化,形成一批新增长点。加强前瞻布局,在生命科学等领域,培育一批战略性产业。加快发展合成生物和再生医学技术,打造未来发展新优势。战略性新兴产业发展行动指出,加速推动基因组学等生物技术大规模应用,建设网络化应用示范体系,推进个性化医疗,新型药物,生物育种等新一代生物技术产品和服务的规模化发展,推进基因库细

胞库等基础平台建设。 (2)“十三五”国家科技创新规划 2016 年7 月,国务院印发《关于“十三五”国家科技创新规划的通知》,规划指出:加快推进基因组学新技术、合成生物技术、生物大数据等生命科学前沿关键技术突破,加强生物产业发展及生命科学研究核心关键装备研发,提升我国生物技术前沿领域原创水平,抢占国际生物技术竞争制高点;把握生物技术和信息技术融合发展机遇,建立百万健康人群和重点疾病病人的前瞻队列,建立多层次精准医疗知识库体系和国家生物医学大数据共享平台,重点攻克新一代基因测序技术、组学研究和大数据融合分析技术等精准医疗核心关键技术,开发一批重大疾病早期筛查、分子分型、个体化治疗、疗效预测及监控等精准化应用解决方案和决策支持系统,推动医学诊疗模式变革。 (3)促进和规范健康医疗大数据应用发展的指导意见 2016 年6 月,国务院办公厅发布《关于促进和规范健康医疗大数据应用发 展的指导意见》,意见指出:依托现有资源建设一批心脑血管、肿瘤、老年病和儿科等临床医学数据示范中心,集成基因组学、蛋白质组学等国家医学大数据资

基因测序技术概述

基因测序技术概述 摘要:基因测序技术是一种发展迅速和应用广泛的现代分子生物学技术之一。本文基于国内外基因测序技术的发展现状,综合评述了四代基因测序技术,归纳了它们各自的特点与优缺点,以及应用现状、范围及其在实际应用中的优势和不足,总结了当前出现的基因测序新方法,并对该项技术的发展趋势进行展望。 关键词:基因测序技术;发展;应用;前景 Abstract: Gene sequencing technology is a kind of modern molecular biology techniques with rapid development and wide application .In this paper, it is based on the current development of gene sequencing technology at home and abroad, a comprehensive review is given on the four generations of gene sequencing technology, it sums up their respective characteristics ,advantages and disadvantages, as well as their application about status, scope and its advantages and disadvantages in practical application, it summarizes the new gene sequencing method, and points out the development trend of itself. Key words: Gene sequencing technology; Development; Application; Prospects

DNA测序方法

DNA 测序 黄宝福枫岭生物 雅睿生物f b hoyear@funglyn.com

双脱氧法测序(Sanger法) 双脱氧法又称末端终止法,用于单链测序 1982年Sanger 利用此原理建立了双脱氧测序法。原理和加减法相似,但不再是加一种dNTP或减一种dNTP,而是加入某一种双脱氧核苷,来终止聚合反应。用此法测得越南伯克霍尔德氏菌Burkholderia vietnamiensis G4含5577bp.

双脱氧法测序原理 ?DNA链中的核苷酸是以3`,5`-磷酸二酯键相连接,合成DNA所用的底物是2`-脱氧核苷三磷酸(dNTP),在Sanger 双脱氧链终止法中被掺入了2`,3`-双脱氧核苷三磷酸(ddNTP),当ddNTP位于链延伸末端时, 由于它没有3`- OH,不能再与其它的脱氧核苷酸形成3′,5′-磷酸二酯键,DNA合成便在此处终止,如果此处掺入的是一个ddATP,则新生链的末端就是A,依次类推可以通过掺入ddTTP、ddCTP、 ddGTP ,则新生链的末端为T、C或G。

双脱氧法测序原理 脱氧核甘酸与双脱氧核甘酸结构比较

双脱氧法测序原理 ?在测序反应中通常设置4个反应,各反应管中同时加入一种DNA模板和引物、DNA聚合酶I(失去5′ 3′外切核酸酶活性)、其中一管中分别加入1种 ddNTP(如ddTTP 、dTTP)以及4种dNTP( dATP 、dCTP 、dGTP 、dTTP ),引物末端用放射性核素标记, ddTTP的比例很小(1:10),因此掺入的位点是随机的,经过适当的条件下温育,将会有不同长度的DNA片段合成。它们都具有相同的5′末端,3′末端都因掺入了ddTTP而以T结尾。在其它三管中同理加入相应的ddNTP。

千亿基因测序产业启动

千亿基因测序产业启动 时近年末,关于新兴产业“十二五”规划的消息每天都有更新。作为生物产业的重点技术之一,基因工程的发展正成为新的热点,在即将出台的《生物产业发展“十二五”规划》中,基因测序产业成为了政策关注的一个焦点。 基因测序(又称DNA测序)是一种破解基因密码(即碱基序列)的技术,这种技术不仅被用于医药行业(DNA测序已经被证实能够帮助治疗癌症),诸如材料科学、生物燃料(石油的替代品)以及产能更高的种植业和畜牧业等领域也会用到。 有权威人士向媒体透露,在即将公布的战略性新兴产业规划之一《生物产业发展“十二五”规划》中,明确提出,“十二五”期间,我国的生物产业要完成10000种微生物、100种动植物组基因测序、发现约500个新的功能基因、转化应用5 个以上有重大经济价值的基因或蛋白。按每种微生物进行“基因组完成图”测序的费用为30万—50万的价格来看,微生物的基因测序带来的市场规模将达到的规模超乎市场之前的预料。而全球著名财经杂志《福布斯》曾刊文指出,在中国,基因测序技术将构成一个千亿元规模的市场。 中国的基因测序市场由此启动。在资本市场,具备基因概念的上市公司也有一些,如以核酸试剂为主的生物医药公司达安基因,即将收购

和泽生物的ST中源,投资建立生物治疗研究中心主要研究干细胞移植技术及干细胞库和生物治疗技术的复兴医药等。 有业内人士表示,很多上市公司是最近几年方才涉足相关产业,很多投资项目还处于研发阶段,这些研究项目的进展情况,是分析上市公司价值的关键。 相关个股 达安基因:公司作为一家典型的创新性生物企业,具有中山大学的高校背景,显然是政策利好的最大受益者之一。公司立足于核酸诊断试剂,将逐步实现产业链延伸,具备了持续快速增长的实力。公司在核心业务核酸诊断试剂领域具备了核心竞争优势,市场龙头地位巩固。在此基础上,公司致力于整个诊断试剂产业链的延伸目前已拥有PCR、TRF、免疫、TCT、仪器和生化6条生产线,并涉足临床检验、食品安全检验等下游应用领域,初步实现了诊断领域的上下游一体化,协同作用明显。 ST中源:今年3月,ST中源披露,向天津赛恩投资定向发行不超过4867万股,后者全部以现金认购,所募资金拟用于收购和泽生物100%股权并对其增资,增资的资金拟在全国13个省市,与当地三甲医院、医科大学合作,从事干细胞生物资源保存,建立覆盖全国的干细胞库产业化网络,并在天津建立空港干细胞产业化基地,合作开展干细胞多项研究等。今年8月,和泽生物申报的三项关于干细胞技术

相关主题