当前位置:文档之家› 飞行器概述6

飞行器概述6

飞行器概述6

飞行器概述6

飞行控制系统简介

自动飞行控制系统 飞行控制系统(简称飞控系统)的作用是保证飞机的稳定性和操纵性,提高飞机飞行性能和完成任务的能力,增强飞行的安全性和减轻驾驶员的工作负担。 深圳市瑞伯达科技有限公司,致力于成为全球无人机飞行器领导品牌,是智能化无人机飞行器及控制系统的研制开发的专业厂商,生产并提供各行业无人机应用的解决方案。产品线涵盖各种尺寸多旋翼飞行器、专业航拍飞行器、无人机飞行控制系统、无人机地面站控制系统、高清远距离数字图像传输系统、专业级无线遥控器、高精飞行器控制模块及各类飞行器配件 飞行器的自动飞行一、问题的提出早在重于空气的飞行器问世时,就有了实现自动控制飞行的设想。1891年海诺姆.马克西姆设计和建造的飞行器上安装了用于改善飞行器纵向稳定性的飞行系统。该系统中用陀螺提供反馈信号,用伺服作动器偏转升降舵。这个设想在基本概念和手段上与现代飞行自动控制系统有惊人的相似,但由于飞机在试飞中失事而未能成为现实。 60年代飞机设计的新思想产生了,即在设计飞机的开始就考虑自动控制系统的作用。基于这种设计思想的飞机称为随控布局飞行器(Control Configured Vehicle 简称CCV)。这种飞机有更多的控制面,这些控制面协同偏转可完成一般飞机难以实现的飞行任务,达到较高的飞行性能。 飞控系统分类飞控系统分为人工飞行控制系统和自动飞行控制系统两大类。由驾驶员通过对驾驶杆和脚蹬的操纵实现控制任务的系统,称为人工飞行控制系统。最简单的人工飞行控制系统就是机械操纵系统。不依赖于驾驶员操纵驾驶杆和脚蹬指令而自动完成控制任务的飞控系统,称为自动飞行控制系统。自动驾驶仪是最基本的自动飞行控制系统。飞控系统构成飞控系统由控制与显示装置、传感器、飞控计算机、作动器、自测试装置、信息传输链及接口装置组成。控制及显示装置是驾驶员输入飞行控制指令和获取飞控系统状态信息的设备,包括驾驶杆、脚蹬、油门杆、控制面板、专用指示灯盘和电子显示器(多功能显示器、平视显示器等)。传感器为飞控系统提供飞机运动参数(航向角、姿态角、角速度、位置、速度、加速度等)、大气数据以及相关机载分系统(如起落架、机轮、液压源、电源、燃油系统等)状态的信息,用于控制、导引和模态转换。飞控计算机是飞控系统的“大脑”,用来完成控制逻辑判断、控制和导引计算、系统管理并输出控制指令和系统状态显示信息。作动器是飞控系统的执行机构,用来按飞控计算机指令驱动飞机的各种舵面、油门杆、喷管、机轮等,以产生控制飞机运动的力和力矩。自测试装置用于飞行前、飞行中、飞行后和地面维护时对系统进行自动监测,以确定系统工作是否正常并判断出现故障的位置。信息传输链用于系统各部件之间传输信息。常用的传输链有电缆、光缆和数据总线。接口装置用于飞控系统和其他机载系统之间的连接,不同的连接情况可以有多种不同的接口形式。 自动飞行控制系统由自动驾驶仪、自动油门杆系统、自动导航系统、自动进场系统和自动着陆系统、自动地形跟随/回避系统构成。 RIBOLD瑞伯达科技有限公司,致力于成为全球飞行影像系统独家先驱,其产品线涵盖无人机飞行控制系统及地面站控制系统、影视航拍飞行平台、商用云台系统、高清远距离数字图像传输系统、无线遥控和成像终端及模型飞行器产品,多旋翼飞行器和高精控制模块。 RBD瑞伯达坚持创新, 以技术和产品为核心,通过完美的产品带来前所未有的飞行体验。我们的目标是做世界一流的无人机企业,为我们的客户提供一流的产品和服务!

国内民航飞机分类概述

国内民航飞机分类概述 大型宽体飞机:座位数在200以上,飞机上有双通道通行 747 波音747,载客数在350-400人左右。(747、74E均为波音747的不同型号) 777 波音777,载客在350人左右。(或以77B作为代号) 767 波音767,载客在280人左右 M11 麦道11,载客340人左右 340 空中客车340,载客350人左右 300 空中客车300,载客280人左右(或以AB6作为代号) 310 空中客车310,载客250人左右 ILW 伊尔86,苏联飞机,载客300人左右 中型飞机:指单通道飞机,载客在100人以上,200人以下 M90 麦道82,麦道90载客150人左右 733 波音737系列载客在130-160左右 320 空中客车320,载客180人左右 TU5 苏联飞机,载客150人左右 146 英国宇航公司BAE-146飞机,载客108人 YK2 雅克42,苏联飞机,载客110人左右 小型飞机:指100座以下飞机,多用于支线飞行 YN7 运7,国产飞机,载客50人左右 AN4 安24,苏联飞机,载客50人左右 SF3 萨伯100,载客30人左右 ATR 雅泰72A,载客70人左右 美国波音公司和欧洲空客公司是世界上两家最大的飞机制造商。波音是世界最大的航空航天公司,1997年波音与麦道公司合并,其主要民机产品包括717、737、747、757、767、777和波音公务机。全球正在使用中的波音喷气客机达11000多架。欧洲空客公司成立于1970年,如今已成为美国波音飞机公司在世界民用飞机市场上的主要竞争对手。30年来,该公司共获得来自175家客户的订货4200余架。 波音公司飞机机型系列的波音公司飞机型号介绍 波音737介绍 波音737飞机是波音公司生产的双发(动机)中短程运输机,被称为世界航空史上最成功的民航客机。在获得德国汉莎航空公司10架启动订单后波音737飞机于1964年5月开始研制,1967年4月原型机试飞,12月取得适航证,1968年2月投入航线运营。 波音737飞机基本型为B737-100型。传统型B737分100/200/300/400/500型五种,1998年12月5日,第3000架传统型B737出厂。目前,传统型B737均已停止生产。 1993年11月,新一代波音737项目正式启动,新一代波音737分600/700/800/900型四种,它以出色的技术赢得了市场青睐,被称为卖的最快的民航客机。截止2001年底,已交付超过1000架。 2000年1月,波音737成为历史上第一种累计飞行超过1亿小时的飞机。

飞行管理系统

第16章飞行管理系统 16.1飞行管理系统概述 随着飞机性能的不断提高,要求飞行控制系统实现的功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用的技术条件、任务和用户要求,飞机可用空间和动力,飞机的气动力特性及规范要求等诸因素的限制下,把许多分系统综合起来,实施有效的统一控制和管理。于是便出现了新一代数字化、智能化、综合化的电子系统-飞行管理系统(FMS-Flight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产的大中型飞机广泛采用飞行管理系统。 16.2飞行管理系统的组成和功能 16.2.1飞行管理系统的组成 飞行管理系统由几个独立的系统组成。典型的飞行管理系统一般由四个分系统组成,如图16-1,包括: (1)处理分系统-飞行管理计算机系统(FMCS),是整个系统的核心; (2)执行分系统-自动飞行指引系统和自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)和无线电导航设备。 驾驶舱主要控制组件是自动飞行指引系统的方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)和推力方式显示。各部分都是一个独立的系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词的概念是将这些独立的部分组成一个综合系统,它可提供连续的自动导航、指引和性能管理。

图16-1飞行管理系统 16.2.2飞行管理系统的功能 FMS的主要功能包括导航/制导、自动飞行控制、性能管理和咨询/报警功能。FMS实现了全自动导航,大大减轻了驾驶员的工作负担。另外,飞机可以在FMS的控制下,以最佳的飞行路径、最佳的飞行剖面和最省油的飞行方式完成从起飞直到进近着陆的整个飞行过程。 FMS在各飞行阶段的性能管理功能: (1)起飞前 通过FMS的控制显示组件人工向FMC输入飞行计划、飞机全重和外界温度。如果飞行计划已经存入FMC的导航数据库,则可直接调入。飞行计划包括起飞机场、沿途航路点和目的机场的经纬度、高度等。 (2)起飞 根据驾驶员输入的飞机全重和外界温度,FMC计算最佳起飞目标推力。 (3)爬升 根据驾驶员的选择,FMC计算最佳爬升剖面。FMC还根据情况向驾驶员提供阶梯爬升和爬升地点的建议,供驾驶员选择,以进一步节约燃油。 (4)巡航 FMC根据航线长短、航路情况等因素,选择最佳巡航高度和速度。结合导航设施,确定起飞机场至目的机场的大圆航线,以缩短飞行距离。 (5)下降 FMC根据驾驶员输入或存储的导航数据确定飞机下降的顶点。在下降阶段,FMC确定下降速度,最大限度利用飞机的势能,节约燃油。 (6)进近 FMS以优化速度引导飞机到达跑道入口和着陆点。 16.2.3飞行管理计算机系统 由飞行管理计算机(FMC)和控制显示组件(CDU)组成。

张书铭 15051251 无人飞行器系统概论课程总结与感想.

无人飞行器系统综述 学生姓名:张书铭 院系:航空科学与工程学院 班级:150519班 学号:15051251 2015年12月

一、引言 无人飞行器系统是以无人机为主体,由多个分系统组成的复杂系统,集成了航空技术、信息技术、控制技术、测控技术、传感技术以及新材料、新能源等多学科技术,已成为航空航天的一个新的发展方向。无人机的发展历史可以追溯到上一世纪20 年代,应技术进步和战争需求,无人机已逐渐发展为世界各国尤其是发达国家武器装备中重要组成部分之一,无人化也已日益成为未来战争发展的方向之一,同时无人机也正在向民用化发展。进入20 世纪末,无人机发展进入了一个新时代并先后形成三次发展浪潮。目前,世界各主要国家尽管发展方向和发展程度各异,但无不积极研制开发无人机,在进一步发展军事用途的同时又扩展到民用领域,一个无人机发展高潮正在到来。 二、无人飞行器系统简述 无人驾驶飞机简称“无人机”,英文缩写为“UA V”,是利用无线电遥控设备和自备的程控装置操纵的不载人飞机。从技术角度定义可以分为:无人直升机、无人固定翼机、无人多旋翼飞行器、无人飞艇、无人伞翼机等。而无人机系统,英文缩写为“UAS”,是以无人机为主体,配有相关的分系统,能完成特定任务的一组设备。无人飞行器系统一般由无人机平台、测控与信息传输分系统、飞行控制与导航系统、任务载荷、发射与回收系统和地面运输与保障系统组成。 无人机系统按重量、航程和飞行高度可分为:微型无人机(重量一般不超过1kg)、小型无人机(重量一般不超过20kg,航程不超过30km)、近程无人机(航程能达到100km)、中程无人机(航程能达到500km)、中空长航时无人机(航程超过500km,续航时间20 小时以上,飞行高度5000到10000m)和高空长航时无人机(航程达到10000km,续航时间20 小时以上,飞行高度达到15000m)。 相比有人驾驶飞行器,无人机有着用途广泛,成本低,效费比好,无人员伤亡风险,生存能力强,机动性能好,使用方便等优势,适用于执行“枯燥的、脏的、危险的”所谓“3D”任务,能在核污染、化学污染地区和战争前沿侦察,能在极端恶劣天气下飞行,在现代战争中有着极其重要的作用。无人机执行的任务分为攻击杀伤型和非攻击杀伤型。美国海军给无人机划分了以下任务分区:

飞机定义和分类及飞机研制过程

飞机定义和分类及飞机研制过程 有动力装置和固定机翼的重于空气的航空器。动力装置用于产生推(拉)力或动力升力, 机翼用于在大气中运动时产生升力。也有人把气球、飞艇以外的航空器泛称为飞机。1903年美国莱特兄弟设计制造的飞机进行了成功的飞行,这是世界上首次实现重于空气航空器的有动力、可操纵飞行。 一、飞机的分类 飞机是航空运输系统的运载工具。经过近一个世纪的发展,飞机的飞行性能已达到很高水平。以速度为例,虽然目前大部分民航机都是亚音速(即飞机飞行速度与音速之比或称马赫数 M小于0.75)民航机,但跨音速(M在0.75至1.2之间)、超音速(M在1.2至5.0之间)民航飞机也已投入运营,如前苏联1977年投入运营的图—144飞机,英、法合作发展、1976年投入定期航线运营的"协和"号飞机等。 所有飞行器可以分为航空器和航天器,前者是大气飞行器,而后者是空间飞行器(如火箭、航天飞机、行星探测器等)。航空器可分为轻于空气的航空器(如气球、飞艇等)与重于空气的航空器,如飞机与各种直升机、滑翔机、旋翼机等。飞机是最主要的航空器,由于它的用途很多,其分类方法也很多。 (一)按构造分类 按不同的构造可将飞机分为不同的类型。 按机翼数目,飞机一般可分为双翼机和单翼机。 按发动机类型可分为活塞发动机及螺旋桨组飞机和喷气式飞机。 按发动机数目可分为单发动机飞机、双发动机飞机、三发动机飞机和四发动机飞机。按起落地点可分为陆上飞机、雪(冰)上飞机、水上飞机、两栖飞机和舰载飞机。

按起落方式可分为滑跑起落式飞机和垂直/短距起落式飞机。 此外,还可按尾翼位置或数量、机身数量分类。 (二)按用途分类 由于飞机的性能、构造和外形基本上由用途来确定的,故按用途分类是最主要的分类方法之一。现代飞机按用途主要可分为军用机与民用机两类,另有一类专门用于科研和试验的飞机,可称为研究机。下面主要介绍民用机。 1. 旅客机用于运载旅客和邮件,联络国内各城市与地区,或国际间的城市。旅客机可按大小 和航程进一步分为:洲际航线上使用的远程(大型)旅客机;国内干线上使用的中程(中型)旅客机;地方航线(支线)上使用的近程(轻型)旅客机。目前各国使用的旅客机大都是亚音速机。超音速旅客机有两种,其最大巡航速度约为二倍音速。中型旅客机使用较广泛,既有喷气式的,也有带螺旋桨的,如"三叉戟"。 2. 货机用于运送货物,一般载重较大,有较大的舱门,或机身可转折,便于装卸货物;货机修理维护简易,可在复杂气候下飞行。 3. 教练机(民用)用于训练民航飞行人员,一般可分为初级教练机和高级教练机。 4. 农业机、林业机用于农业喷药、施肥、播种、森林巡逻、灭火等。大部分属于轻型飞机。 5. 体育运动机用于发展体育运动,如运动跳伞等,可作机动飞行。 6. 多用途轻型飞机这类飞机种类与用途繁多,如用于地质勘探、航空摄影、空中游览、紧急救护、短途运输等。 农、林业机、体育运动机、多用途轻型飞机均属于通用航空(Ge neral Aviatio n)范畴。在美、英等国,通用航空一般指既不属于军用航空、也不属于定期民用客货运输的航空活动。组成:飞机的主要组成部分有机体、起落装置、动力装置、飞行控制系统、机载设备,以及其它系

飞行管理系统介绍

飞行管理系统介绍 一、飞行管理系统(FMC)组成和基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成:1、飞行控制系统(DFCS) 包括自动驾驶(A/P)和飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)和飞行指引。 2、自动油门系统(A/T) 其核心是一台自动油门计算机和两台发动机油门操纵的伺服机构,A/T 提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心是一台飞行管理计算机FMC和两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面和纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准和定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A和34N型飞机装备的是电子飞行仪表系统,3T0型飞机装备的还是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)和两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

(二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用是:1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错和失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重和环境温度提供最佳目标推力。(2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力和目标空速的设定。 (3)巡航(CRZ)—提供最佳高度和巡航速度,以及大圆航线和导航系统的选择和自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度和分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度和距离转入进近阶段。(5)进近(APP)—确定飞机在五边进近基准点时的高度、空速和距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油和飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)和自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序和辅助正常程序 1、正常程序 所谓正常程序就是自动飞行的标准程序,可分为如下七个飞行阶段:(1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提

飞行器制造技术要点

一、概论 1、飞行器加工工艺就是通过改变原材料、毛坯或半成品的形状、尺寸、性质或表面状态,使之成为符合 设计要求的飞行器产品的零部件的方法。 2、飞行器结构设计的基本要求 (1)必须保证飞行器具有精确地气动外形 (2)在确保导弹一次使用成功的前提下,要满足规定的强度和刚度要求,必须尽量简化导弹结构、减轻质量并降低制造成本。 (3)必须使飞行器能够适应所规定的严酷自然环境和力学环境。 (4)必须使飞行器具备良好的可维修性 (5)必须强化飞行器系统及各分系统的电磁兼容设计 3、采取的措施 (1)飞行器的结构材料主要采用比强度和比刚度高的金属材料和非金属复合材料,部分采用钛合金和铝锂合金。 (2)在结构设计中,尽量采用先进工艺技术以满足飞行器结构、材料及加工精度等方面要求。 (3)由于飞行器正在朝小尺寸、大威力、超声速、超远程方向发展,因此应大力推广和应用整体结构、蜂窝夹层结构、强力旋压舱段(包括内外旋压)和高性能增强复合材料结构。 (4)大力推广应用计算机辅助设计与制造(CAD|CAM)一体化技术,采用高精度的通用机床设备和测试(包括无损探伤)设备,以保证新一代武器系统制造精度和缩短研制周期。 4、特点 (1)新工艺新技术应用比较多比较快,工艺预研必须走在飞行器研制的前面,以便为新型飞行器的诞生创造条件。 (2)所涉及的不少专业技术属于高科技范畴。 (3)加工工艺的实践性强,其验证工作贯穿于飞行器研制全过程,特别是地面试验必须充分并尽量模拟真实情况。 (4)所加工产品零部件的质量控制十分严格。 5、先进连接技术 焊接分:钎焊、熔焊、压焊 (1)钎焊,是使被连接的构件之间填充熔点低于被焊接材料的材料并使之熔化,而在连接界面上润湿和漫流,从而填充被焊接头的间隙,然后冷却结晶形成不可拆卸的冶金结和的连接方法。 根据焊料液相线温度高低分为:硬钎焊和软钎焊 特点:1)温度远低于母材料的融化温度,对母材性能没有明显影响。2)可在焊接熔化温度下对焊件实体整体均匀加热,对全焊缝同时焊接,焊件的温度梯度小,应力变形小,易保持焊件精度。3)可实现多种异种金属、金属与非金属之间的连接。4)对热源的要求低、工艺简单、易于自动化,焊件相对具有较高的可靠性。 (2)熔焊,是将材料加热至熔化状态,然后冷却结晶成一体,利用液相的相溶而实现原子间的结合的连接方法。 加热热源不同可分为:电弧焊、等离子弧焊、电子束焊、激光焊、气焊(利用化学热)。 特点:1)加热温度高2)焊接件有冶金过程3)焊接温度梯度大,因而焊件的变形也较大4)焊缝金属组织存在着相变,母材与填充金属在焊缝及其附近发生扩散迁移 (3)压焊,是在连接的表面采用加压、摩擦、扩散等特理作用下,两个连接表面在固态下达到紧密接触,金属原子获得能量,活动能力增强而互相接近并扩散形成固态连接。 压焊分:摩擦焊、超声波焊、爆炸焊、扩散焊、电阻电焊。 特点:1)加热的温度低于被焊材料的熔点,必须利用压力才能是连接的材料紧密接触2)在压力下界面两侧存在着原子的扩散,扩散的是否充分,取决于加热的压力,温度和时间3)可在保持基体金属原有的性能条件下,获得同种或异种金属焊接的牢固接头4)不受零件大小、断面尺寸和表面形状的

飞机分类

飞机依其分类标准的不同,可有以下划分方法: 1、按飞机的用途划分,有民用航空飞机和国家航空飞机之分。国家航空飞机是指军队、警察和海关等使用的飞机,民用航空飞机主要是指民用飞机和直升飞机,民用飞机指民用的客机、货机和客货两用机。 2、按飞机发动机的类型分,有螺旋桨飞机和喷气式飞机之分。螺旋桨史飞机,包括活塞螺旋桨式飞机和涡轮螺旋桨式飞机,飞机引擎为活塞螺旋桨式,这是最原始的动力形式。它利用螺旋桨的转动将空气向机后推动,借其反作用力推动飞机前进。螺旋桨转速愈高,则飞行速度愈快。喷气式飞机,包括涡论喷气式和涡论风扇喷气式飞机。这种机型的优点是结构简单,速度快,一般时速可达500-600英里;燃料费用节省,装载量大,一般可载客400-500人或100吨货物。 3、按飞机的发动机数量分,有单机(动机)飞机、双发(动机)飞机、三发(动机)飞机、四发(动机)飞机之分。 4、按飞行的飞行速度分,有亚音速飞机和超音速飞机之分,亚音速飞机又分低速飞机(飞行速度低于400公里/小时)和高亚音速飞机(飞行速度马赫数为0.8-8.9)。多数喷气式飞机为高亚音速飞机。 5、按飞机的航程远近分,有近程、中程、远程飞机之别。远程飞机的航程为1100公里左右,可以完成中途不着陆的洲际跨样飞行。中程飞机的航程为3000公里左右,近程飞机的航程一般小于1000公里。近程飞机一般用于支线,因此又称支线飞机。中、远程飞机一般用于国内干线和国际航线,又称干线飞机。 我国民航总局是采用按飞机客坐数划分大、中、小型飞机,飞机的客坐数在100座以下的为小型,100-200座之间为中型,200座以上为大型。航程在2400km以下的为短程,2400-4800Km 之间为中程,4800KM以上为远程。但分类标准是相对而言的。 军用飞机的分类: 按用途可分为:战斗机、攻击机、轰炸机、战斗轰炸机、侦察机、运输机、教练机、预警机、电子战飞机、反潜机等等。 目前西方国家将战斗机分为四代: 第一代:亚音速战斗机——代表机型:美制f86、苏制米格15、中国歼5等 第二代:强调超音速性能的战斗机——代表机型:美制f4、苏制米格21、中国歼7等 第三代:强调多用途的超音速战斗机——代表机型:美制f16、f15、苏制米格29、苏27等 第四代:强调隐身性能的多用途超音速战斗机——代表机型:美制f22、f35 在我国战斗机又称为“歼击机”,攻击机称为“强击机”,另从战斗机中分出“截击机”,但现在已很少使用“截击机”这一名称。 我国已装备部队的各种机型名称如下: 我国的国产军用飞机名称一般以其机型分类的第一个字再加上序号构成,如歼击机中有歼5、歼6;轰炸机中有轰5、轰6等,我国已装备部队的各种机型名称如下:

飞行管理系统介绍

飞行管理系统介绍 飞行管理系统介绍 一、飞行管理系统(FMC)组成与基本功用 (一)、飞行管理系统(FLIGHT MANAGEMENT SYS)由五个分系统组成: 1、飞行控制系统(DFCS) 包括自动驾驶(A/P)与飞行指引(F/D),其核心为两台飞行控制计算机,该系统用于自动飞行控制(FCC)与飞行指引。 2、自动油门系统(A/T) 其核心就是一台自动油门计算机与两台发动机油门操纵的伺服机构,A/T提供从起飞到着陆全飞行过程的油门控制。 3、飞行管理计算机系统(FMCS) 其核心就是一台飞行管理计算机FMC与两台控制显示组件CDU,它用于从起飞到进近的几乎全部飞行过程的横向(LATERAL)剖面与纵向(VERTICAL)剖面的飞行管理。 我部的34N型飞机装有两部FMCS,这使飞行管理系统的可靠性更高。 4、惯性基准系统(IRUS) 其核心为两台惯导基准组件IRU,其主要功用为提供飞机的姿态基准与定位参数,也可用于飞机自备、远距导航。 5、电子飞行仪表系统(EFIS) 33A与34N型飞机装备的就是电子飞行仪表系统,3T0型飞机装备的还就是旧式的机械式仪表。由于飞行仪表的电子化,逐渐淘汰老式的机械式仪表,而电子飞行仪表必须有相应的字符,符号等图形信号发生器,以提供阴极射线管CRT或液晶LCD显示。EFIS就就是起这个作用的电子式飞行仪表显示系统,它主要包括两台符号发生器(EFIS SG)与两套姿态指引仪(EADI)、两套水平状态指示器(EHSI)。

飞行管理系统介绍

飞行管理系统介绍 (二)、飞行管理系统的基本作用: 这套系统技术先进,设备量大,承担的任务多,其中最根本的功用就是: 1、实现飞行的自动化,大大减轻了飞行员的工作负担,减少人为操作所不可避免的差错与失误。 2、实现飞行全程的优化: (1)起飞阶段(TO)—根据飞机的全重与环境温度提供最佳目标推力。 (2)爬升降段(CLB)—提供最佳爬升剖面:包括爬升点,阶段爬升的设置,目标推力与目标空速的设定。 (3)巡航(CRZ)—提供最佳高度与巡航速度,以及大圆航线与导航系统的选择与自动调谐。 (4)下降阶段(DSE)—提供下降顶点,目标下降速度与分段,以充分利用飞机高度下降所得到的动能,并以最佳的高度,速度与距离转入进近阶段。 (5)进近(APP)—确定飞机在五边进近基准点时的高度、空速与距离。 飞行的优化不仅得到最合理的飞行路径,节省燃油与飞行时间,而且飞机机体的损耗率最少。 3、实现自动着陆 由于有两套自动驾驶通道,具有余度通道,借助仪表着陆系统可实现Ⅱ类气象标准的自动着陆(决断高度50英尺,跑道能见距离700英尺)与自动复飞。 二、FMC控制飞行过程工作概述 飞行过程可归纳为正常程序与辅助正常程序 1、正常程序 所谓正常程序就就是自动飞行的标准程序,可分为如下七个飞行阶段: (1)起飞TAKE OFF 在完成起飞前准备后,只要按压TO/GA开关,即开始起飞程序,此时推力杆自动前进到起飞目标N1值,当飞机滑跑达到60节时,F/D指令杆提供俯仰指令,起飞后400英尺RA高度以上,A/P衔接,同时选择L NA V(水平导航)与V

飞行器系统概论

Whyflight vehicles fly in the air Today we can see many flight vehicles fly in the air,airplanes,missiles,balloons,airships and so on.They have different uses .For example,airplanes are used to load people while missiles are used to attack the target. But,here we have a question:why can they fly in the air? First,a flight vehicle has its own flight principles.The flight vehicle need forces to make it fly. The most important of all is aerodynamics.Aerodynamics are produced by the nearby air of a flying vehicle. Aerodynamics can be divided into three forces in three directions. They are lift to overcome the gravity, drag to block the flight vehicle and lateral force to make the flight vehicle slope.And of course, the flight vehicle has thrust itself, and this is the main force to make it forward. All these forces acted on the fight vehicle keep it balance in the air, so the flight vehicle can move smoothly. Another important action to the flight is moment. There are aerodynamic moments and thrust moment. Aerodynamic moments are also divided into three components named rolling moment, yawing moment, and pitching moment. Rolling moment makes the flight vehicle roll around its longitudinal axis. Yawing moment lets the flight vehicle roll around its vertical axis. Pitching moment makes the flight vehicle roll around its lateral axis. Thrust moments are produced by thrust when it does not pass through the mass center. All

飞行管理系统

第16章飞行管理系统 16、1飞行管理系统概述 随着飞机性能得不断提高,要求飞行控制系统实现得功能越来越多,系统变得越来越复杂,从而迫使系统系统设计师们在可用得技术条件、任务与用户要求,飞机可用空间与动力,飞机得气动力特性及规范要求等诸因素得限制下,把许多分系统综合起来,实施有效得统一控制与管理。于就是便出现了新一代数字化、智能化、综合化得电子系统-飞行管理系统(FMSFlight Management System)。在1981年12月,飞行管理系统首次安装在B767型飞机上。此后生产得大中型飞机广泛采用飞行管理系统。 16、2飞行管理系统得组成与功能 16、2、1飞行管理系统得组成 飞行管理系统由几个独立得系统组成。典型得飞行管理系统一般由四个分系统组成,如图161,包括: (1)处理分系统-飞行管理计算机系统(FMCS),就是整个系统得核心; (2)执行分系统-自动飞行指引系统与自动油门,见自动飞行控制系统; (3)显示分系统-电子飞行仪表系统(EFIS),见仪表系统; (4)传感器分系统-惯性基准系统(IRS)、数字大气数据计算机(DADC)与无线电导航设备。 驾驶舱主要控制组件就是自动飞行指引系统得方式控制面板(AFDS MCP)、两部控制显示组件(CDU)、两部电子飞行仪表系统(EFIS)控制面板。主要显示装置就是CDU、电子姿态指引仪(EADI)、电子水平状态指示器(EHSI)与推力方式显示。各部分都就是一个独立得系统,既可以单独使用,又可以有多种组合形式。飞行管理系统一词得概念就是将这些独立得部分组成一个综合系统,它可提供连续得自动导航、指引与性能管理。

飞机制造技术 知识点

飞机制造特点与协调互换技术 1、飞机结构的特点:外形复杂,构造复杂;零件数目多;尺寸大,刚度小。 2、飞机制造的主要工艺方法:钣金成形、结构件机械加工、复合材料成形、部件装配与总装配 3、飞机制造的过程:毛坯制造与原料采购、零件制造、装配、试验 4、飞机制造工艺的特点:单件小批量生产、零件制造方法多样、装配工作量大、生产准备工作量大、需要采用特殊的方法保证协调与互换 5、互换性 互换性是产品相互配合部分的结构属性,是指同名零件、部(组)件,在分别制造后进行装配时,除了按照设计规定的调整以外,在几何尺寸、形位参数和物理、机械性能各方面不需要选配和补充加工就能相互取代的一致性。 6、协调性 协调性是指两个或多个相互配合或对接的飞机结构单元之间、飞机结构单元及其工艺装备之间、成套的工艺装备之间,其几何尺寸和形位参数都能兼容而具有的一致性程度。协调性可以通过互换性方法取得,也可以通过非互换性方法(如修配)获得,即相互协调的零部件之间不一定具有互换性。 7、制造准确度 实际工件与设计图纸上所确定的理想几何尺寸和形状的近似程度。 8、协调准确度 两个相互配合的零件、组合件或段部件之间配合的实际尺寸和形状相近似程度。 9、协调路线:从飞机零部件的理论外形尺寸到相应零部件的尺寸传递体系。 10、三种协调路线:按独立制造原则进行协调、按相互联系制造原则进行协调、按相互修配原则进行协调 11、模线 模线是使用1:1比例,描述飞机曲面外形与零件之间的装配关系的一系列平面图线。模线分为理论模线和构造模线。 12、样板:样板是用于表示飞机零、组、部件真实形状的刚性图纸和量具。 13、样机:飞机的实物模型 14、数字样机:在计算机中,使用数学模型描述的飞机模型,用以取代物理样机。 15、数字化协调方法 通过数字化工装设计、数字化制造和数字化测量系统来实现。利用数控加工、成形,制造出零件外形。在工装制造时,通过数字测量系统实时监控、测量工装或者产品上相关控制点的位置,

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

飞行器自动控制导论_第二章飞行力学基础

第二章飞行力学基础 2.1 飞行器空间运动的表示、飞行器操纵机构、稳定性和操纵性的概念2.1.1常用坐标系 1)地面坐标系(地轴系)(Earth-surface reference frame)Sg-o g x g y g z g 原点o g 取自地面上某一点(例如飞机起飞点)。o g x g 轴处于地平面内并指向 某方向(如指向飞行航线);o g y g 轴也在地平面内并指向右方;o g z g 轴垂直地面 指向地心。坐标按右手定则规定,拇指代表o g x g 轴,食指代表o g y g 轴,中指代表 o g z g 轴,如图2-1所示。 2)机体坐标系(体轴系)(Aircraft-body coordinate frame)Sb-oxyz 原点o取在飞机质心处,坐标与飞机固连。Ox与飞机机身的设计轴线平行,且处于飞机对称平面内;oy轴垂直于飞机对称平面指向右方;oz轴在飞机对称平面内;且垂直于ox轴指向下方(参看图2.1-1)。发动机推力一般按机体坐标系给出。 3)速度坐标系(Wind coordinate frame)Sa-ox a y a z a 速度坐标系也称气流坐标系。原点取在飞机质心处,ox a 轴与飞行速度V的 方向一致。一般情况下,V不一定在飞机对称平面内。oz a 轴在飞机对称面内垂 x 图2.1-1 机体坐标系与地面坐标系

直于ox a 轴指向机腹。oy a 轴垂直于x a oz a 轴平面指向右方,如图2.1-2所示。作用在飞机上的气动力一般按速度坐标系给出。 4)航迹坐标系(Path coordinate frame)Sk-ox k y k z k 原点取在飞机质心处,ox k 轴与飞机速度V 的方向一致。oz k 轴在包含ox k 轴的铅垂面内,向下为正;oy k 轴垂直于x k oz k 轴平面指向右方。研究飞行器的飞行轨迹时,采用航迹坐标系可使运动方程形式较简单。 2.1.2 飞机的运动参数 1)飞机的姿态角 1.俯仰角θ(Pitch angle) 机体轴ox 与地平面间的夹角。以抬头为正。 2.偏航角ψ(Yaw angle) 机体轴ox 在地平面上的投影与地轴o g x g 间的夹角。以机头右偏航为正。 3.滚转角φ(Roll angle) 又称倾斜角,指机体轴oz 与通过ox 轴的铅垂面间的夹角。飞机向右倾斜时 图2.1-2 速度坐标系与地面坐标系

2019飞行器制造工艺专业就业方向与就业前景如何_就业前景

2019飞行器制造工艺专业就业方向与就业 前景如何_就业前景 2019飞行器制造工艺专业就业方向与就业前景如何 1、飞行器制造工艺专业简介 飞行器制造工艺专业学生主要学习机械制图、互换性与技术测量、工程材料与金属工艺、电工电子技术基础、工程力学、计算机辅助绘图、机械设计基础、CAD/CAM软件应用(Pro/E)、机械制图大作业、机械设计CAD设计、钳工技能实训、普通机加工技能实训、飞行器专业英语、CAD/CAM 软件应用(MasterCAM)、飞行器结构学、机械零件切削加工、机械零件数控车削加工、机械零件数控铣削加工、机械零件数控加工中心加工、飞行器制造工艺生产实训、飞行器制造工艺、专业毕业实践等课程。 飞行器制造工艺专业培养与我国社会主义现代化建设要求相适应的,在德、智、体、美等方面全面发展的,具有本专业综合职业能力的,在飞行器零件制造和装配工艺、质量检验与控制等第一线工作的高素质技能型人才。 2、飞行器制造工艺专业就业方向 本专业毕业生主要面向航天航空等制造领域及其他机械制

造领域,从事飞行器零件制造、飞行器装配、飞行器零件制造与装配工艺制定、数控编程工作,以及普通机电产品零件制造与装配、零件制造工艺与装配工艺制定、质量检验与控制等工作。 从事行业:毕业后主要在航天、新能源、机械等行业工作,大致如下:1 航天/航空2 新能源3 机械/设备/重工4 计算机软件5 电子技术/半导体/集成电路6 其他行业7 通信/电信/网络设备8 专业服务(咨询、人力资源、财会) 工作城市: 毕业后,深圳、北京、西安等城市就业机会比较多,大致如下: 1 深圳 2 北京 3 西安 4 上海 5 成都 6 长沙 7 大连 8 杭州 3、飞行器制造工艺专业就业前景如何 我国航天制造业的发展急需飞行器制造类的高技能人才,因此,我国高校近年开始开设飞行器制造工艺专业,该专业毕业生需要熟练掌握飞行器制造工艺、CAD/CAM基本理论、机械产品CAD/CAM技术,了解飞行器原理及系统构成,既能组织特种产品和一般产品加工,又能熟练操作飞行器制造加工设备,适应生产、建设、管理、服务第一线需要的高等技术应用性人才。 飞行器制造工艺技术属于机械制造行业中的钳工、钣金工制

高超声速飞行器结构材料与热防护系统

本文2010201222收到,作者分别系中国航天科工集团三院310所助工、高级工程师 高超声速飞行器结构材料与热防护系统 郭朝邦 李文杰 图1 挂载在B 252H 机翼的X 251A 摘 要 随着人类对高超声速飞行器的不断探索,结构材料和热防护系统已成为高超技术发展的瓶颈。首先介绍了X 251A 和X 243A 的项目概况、结构材料和热防护系统,然后分别从高超声速试飞器超高温热防护材料、大面积热防护材料和热防护系统等几方面对X 251A 和X 243A 试飞器进行了分析,最后提出了结构材料和热防护系统发展的关键技术。 关键词 X 251A X 243A 结构材料 热防护 系统 飞行器 高超 引 言 随着高超声速飞行器飞行速度的不断提高,服役环境越来越恶劣,飞行器的热防护问题成为限制飞行器发展的瓶颈。而高超声速结构材料和热防护系统的研究与开发是高超声速飞行器热防护的基础,因此,各国都大力开展了高超声速飞行器热防护材料与结构的相关研究。尤其是以美国为代表的X 251A 和X 243A 高超声速飞行器在结构材料和热防护方面的研究比较突出,本文对这两种试飞器的结构材料和热防护技术分别进行详细介绍。1 X 251A 高超声速飞行器1.1 项目概况 X 251A 计划是由美国空军研究试验室(AFRL )、国防高级研究计划局(DARP A )、NAS A 、波音公司 和普惠公司联合实施的旨在验证高超声速飞行能力 的计划。终极目标是发展一种马赫数达到5~7的可以在1h 内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。试验方式是使 用B 252H 轰炸机挂载X 251A 飞行,达到预定的飞 行条件,释放X 251A 进行飞行试验。图1是挂载在B 252H 机翼下的X 251A 。美国空军在2003年开始研 制试飞器,2004年12月完成初始设计评估,2005年1月开始详细设计,2005年9月27日被正式赋予X 251A 的代号,2007年5月该项目通过关键设计评审。2009年12月9日在加利福尼亚州爱德华兹空军基地进行了首次系留挂载飞行试验,X 251A 挂载在B 252H 重型轰炸机的机翼下向北起飞后爬升至15.24km 高空,随后该机携载X 251A 做了较柔和的机动动作。按计划,X 251A 将于2010年2月中旬进行了首次高超声速飞行试验。1.2 结构材料与热防护系统1.2.1 总体结构 X 251A 整个飞行器长7.62m ,质量1780kg,

相关主题