当前位置:文档之家› 1.基因组学简介

1.基因组学简介

1.基因组学简介

材料基因组计划MGI专题学习报告

材料科学与工程前沿课程报告 第一部分:材料基因组计划(MGI)专题学习报告 学院:材料科学与工程学院 专业:材料科学与工程 :XXXXX 学号:XXXXX 班级:XXXXX 2012年11月19日

材料基因组计划(MGI)专题学习报告 摘要:在美国2012 年财政预算中,新增了1 亿美元用以支持一项名为“材料基因组”的创新计划。美国“材料基因组计划”试图创造一个材料创新框架,以期抓住材料发展中的机遇,这个试图揭示物质构成、不同元素排列与材料功能之间关系,进而实现有目的设计新材料的科学工程,有着更强烈的实用和需求背景,也是美国为保持其在先进材料及高端制造业领域领先地位的一大举措。十多年前的中国没有能抓住“人类基因组计划”的先机,面临比“人类基因组计划”更为重要和广泛的“材料基因组计划”,我们不能再次丧失历史机遇。本文主要介绍我对材料基因计划的认识和对我们国家如何能抓住这次历史机遇提出自己的认识并提出展望。 关键词:材料基因组计划历史机遇新材料材料数据库 引言: 2011 年6 月24 日,美国总统奥巴马宣布启动一项价值超过5亿美元的“先进制造业伙伴关系”(Advanced Manufacturing Partnership,AMP)计划,呼吁美国政府、高校及企业之间应加强合作,以强化美国制造业领先地位,而“材料基因组计划”(Materials Genome Initiative,MGI)作为AMP 计划中的重要组成部分,投资将超过1 亿美元。“材料基因组”计划是“先进制造业伙伴关系”计划的主要基础部分,新兴材料才是新型制造业的基础。MGI 的实施正是抓住了AMP计划实施的“牛鼻子”,是重中之重[1]。这是金融危机之后,美国政府意识到仅靠服务业已无法支撑美国经济走出泥潭,必须重振制造业。美国制造业的振兴不是传统制造业的复兴,而是新兴制造业的培育,其中建立在材料科学基础上的新材料产业是重点之一。 2011年9月16日,奥巴马签署了《美国发明法案》,对现行专利体制进行重大变革,并宣布了一系列旨在促进科研成果转化的重要政策措施。可以看出,美国当前的科技政策更加重视科技成果的商业化和开发新市场的改革,“材料基因组计划”也体现出了这一特点:该计划将大大加快材料投入市场的种类及速度,并可通过降低研发成本和周期降低失败风险。 回顾1999 年中国参与了“人类基因组”计划的研究,负责其中3号染色体

人类基因组测序

人类基因组测序 人类基因组(英语:Human genome)又译人类基因体。是人类(Homo sapiens)的基因组。共组成23对染色体,分别是22对体染色体和性染色体X染色体与Y染色体。含有约31.6亿个DNA碱基对。碱基对是以氢键相结合的两个含氮碱基,以A、T、C、G四种碱基排列成碱基序列。其中一部分的碱基对组成了大约20000到25000个基因。1990年~1998年,人类基因组序列已完成和正在测序的共计约330Mb,占人基因组的11%左右;已识别出人类疾病相关的基因200个左右。此外,细菌、古细菌、支原体和酵母等17种生物的全基因组的测序已经完成。 值得一提的是,企业与研究部门的携手,将大大地促进测序工作的完成。美国的基因组研究所(The Institute of Genome Research, TIGR)与PE(Perkin-Elmar)公司合作建立新公司,三年内投资2亿美元,预计于2002年完成全序列的测定。这一进度将比美国政府资助的HGP的预定目标提前三年。美国加州的一家遗传学数据公司(Incyte)宣布(1998年〕,两年内测定基因组中的蛋白质编码序列以及密码子中的单核苷酸的多态性,最后将绘制一幅人的10万个基因的定位图。与Incyte公司合作的HGS(Human Genome Science)公司的负责人宣称,截止1998年8月,该公司已鉴定出10万多个基因(人体基因约为12万个),并且得到了95%以上基因的EST (expressed sequence tag)或其部分序列。 1998年9月14日美国国家人类基因组计划研究所(NHGRI)和美国能源部基因组研究计划的负责人在一次咨询会议上宣布,美国政府资助的人类基因组计划将于2001年完成大部分蛋白质编码区的测序,约占基因组的三分之一,测序的差错率不超过万分之一。同时还要完成一幅“工作草图”,至少覆盖基因组的90%,差错率为百分之一。2003年完成基因组测序,差错率为万分之一。这一时间表显示,计划将比开始的目标提前两年完成。 2003年4月14日,美国联邦国家人类基因组研究项目负责人弗朗西斯?柯林斯博士隆重宣布,人类基因组序列图绘制成功,人类基因组计划的所有目标全部实现。 这样,由美、英、日、法、德和中国科学家经过13年努力共同绘制完成了人类基因组序列图,在人类揭示生命奥秘、认识自我的漫漫长路上又迈出了重要的一步。 基因是生命遗传的基本单位。由30亿个碱基对组成的人类基因组,蕴藏着生命的奥秘。始于1990年的国际人类基因组计划,被誉为生命科学的“登月”计划,原计划于2005年完

细菌的基因预测以及注释

Whole-genome Annotation of an A.baumannii strain A.baumannii ACICU

摘要 随着新一代测序技术的发展,微生物全基因组测序的成本大大减少,DNA序列的生成速度已远远超过其基因的注释速度。功能基因组学的研究已经成为当今研究的主流。然而如此多的数据对现有的基因注释工具提出了巨大的挑战。本研究通过对A.baumanii ACICU染色体序列使用GeneMarks进行基因预测,预测到了3718个基因,然后使用RAST进行基因注释,共注释到了3683个功能基因,将得到的结果与原文献中所注释到的基因进行对比。最后得到结论,基因的预测与注释都需要综合不同软件的结果进行分析,才能得到较为准确的结果。本研究为原核生物全基因组的注释提方法供了参考。 关键字:基因注释全基因组鲍曼不动杆菌GeneMarksRAST

目录 1.引言(Introduction) (2) 1.1.背景介绍 (2) 1.2.全基因组注释软件 (3) 1.3. A.baumannii ACICU相关 (4) 2.材料与方法(Methods and Materials) (5) 2.1.使用GeneMarks进行ORF预测 (5) 2.2.使用RAST进行功能基因注释 (6) 3.结果与讨论(Results and Discussion) (8) 3.1.使用GeneMarks预测ORF的结果以及分析 (8) 3.2.使用RAST进行功能基因注释结果以及分析 (9) 3.3.综合分析 (10) 参考文献 (10) 1.引言(Introduction) 1.1.背景介绍

材料基因组工程

对“材料基因组工程”的认识及看法 学号:22011216 姓名:胡方方 “材料基因组工程”这是一个既熟悉而又陌生的名词,熟悉的是“材料”和“基因组工程”,然而两者的组合就是我们这些外行人所不能想象得到的,这对我们来说是一个新的领域,因而我对它产生了些许的好奇。带着好奇的心理,我聆听了邓伟侨教授的一场关于“材料基因组工程”的课外研学讲座。 要了解“材料基因组工程”,对它有一个清晰而又正确的认识。首先,要弄懂什么是“材料”,什么是“基因组工程”;再来进一步的认识什么是“材料基因组工程”,为什么会出现以及一些现状。 “材料”是人类用于制造物品、器件、构件、机器或其他产品的那些物质。“基因组工程”就是测出人类基因组DNA的30亿个碱基对的序列,发现所有人类基因,找出它们在染色体上的位置,破译人类全部遗传信息。物质的基本组成单元就是原子,而将材料与基因组工程联系在一起,不难得出这是将材料与人类做一个类比,基因之于人的性状如同原子之于材料。我们知道,原子结构决定了物质的性质,性质决定了物质的用途,反之,那么想要得到有着特定功能的物质材料,我们就能够得到组成物质的原子及其原子结构。材料显微组织及其中的原子排列决定了材料的性能,就像人体细胞里的基因排列决定了人体机能一样。材料基因工程就是寻找和建立材料从原子排列到相的形成到显微组织的形成到材料性能与使用寿命之间的相互关系,把成分-结构-性能关系的数据库与计算材料设计结合起来,可以大大加快材料研发速度、降低材料研发的成本、提高材料设计的成功率。 人类基因工程计划的实施和取得的进展和成果,以及现实生活中许许多多的的例子给了科学家和研究人员很大的启发。 一、“材料基因组工程”是在何种的时代背景下被提出的。 技术的革新和经济的发展越来越依赖于新材料的进步,就像身体是革命的本钱,良好的材料则是技术革新和经济发展的载体、基石,没有优良的材料作支撑,一切都只是空谈,都是虚无缥缈的,先进的科学技术也就不能够被充分的表达。目前,从新材料的最初发现到最终工业化应用一般需要10~20年的时间。例如,作为目前移动电子设备所使用的Li电池,从上世纪70年代中期的实验室原型到90年代晚期的应用,前后花了近20年的时间,但是至今还没能够应用到电动汽车上,很明显新材料的研发步伐严重滞后于产品的设计,也就是说先进的科学技术因为材料的落后而不能够付诸现实。而这一类事情带来的结果不仅仅局限在材料方面,他带来了跟多的能源的浪费以及环境的污染等等。当前,面临竞争激烈的制造业和快速的经济发展,材料科学家和工程师必须缩短新材料的发现到付诸应用的研发周期,只有这样才能解决在21世纪这个科学技术与经济呈爆炸式发展的时代对新型材料的大量需求的巨大挑战。然而,目前的新材料研发主要依据研究者的科学直觉和大量重复的尝试实验。其实很大一部分的实验是可以依靠高效、准确的计算工具模拟来实现就可以得到结果的,但是现实中我们所拥有的计算准确性不够,而浪费大量的时间和原料。另一方面,新材料从发现、发展、性能优化、系统设计和集成、产品论证及推广过程中所涉及的研究团队间彼此独立、缺少合作和相互间数据、技术的共享,使得研发周期再一次的延长。 二、“材料基因组工程”的主要目的是什么呢?

Ion torrent微生物(细菌)全基因组重测序文库构建实验方案

微生物(细菌)全基因组重测序文库构建实验方案 一、重测序原理 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。 二、技术路线 ↓基因组DNA提取 细菌DNA(纯化) ↓超声波打断 DNA片段化 ↓ 文库构建 ↓Ion OneTouch 乳液PCR、ES ↓Ion PGM、Ion Proton 上机测序 ↓ 生物信息学分析 三、实验方案 1.细菌总DNA的提取 液氮速冻、干冰保存的细菌菌液:若本实验室可以提供该细菌生长的条件,则对菌液进行活化,培养至对数期时,对该细菌进行DNA提取;若本实验室不能提供该细菌的生长条件,则应要求客户提供尽可能多的样本,以保证需要的DNA量。 细菌DNA采用试剂盒提取法(如TianGen细菌基因组提取试剂盒)。 取对数生长期的菌液,按照细菌DNA提取试剂盒操作步骤进行操作。提取完成后,对基因组DNA进行纯度和浓度的检测。通过测定OD260/280,范围在1.8-2.0之间则DNA较纯,使用Qubit对提取的DNA进行定量,确定提取的DNA 浓度达到文库构建的量。

2.DNA片段化 采用Covaris System超声波打断仪(Covaris M220),将待测DNA打断 步骤: 1)对待打断的DNA进行定量,将含量控制在100ng或者1μg 2)打开Covaris M220安全盖,将Covaris AFA-grade Water充入水浴容器内,至液面到最高刻度线(约15mL),软件界面显示为绿色 3)将待打断DNA装入Ep LoBind管中,其中DNA为100ng或1μg,加入Low TE 至总体积为50mL 4)将稀释的DNA转移至旋钮盖的Covaris管中(200bp规格),转移过程中不能将气泡带入,完成后旋紧盖子 5)选择Ion_Torrent_200bp_50μL_ScrewCap_microTube,将对应的小管放入卡口,关上安全盖,点击软件界面“RUN” 6)打断结束后,将混合液转移至一支新的1.5mL离心管中 3.末端修复及接头连接 3.1 末端修复 使用Ion Plus Fragment Kit进行,以100ng DNA量为例,各组分使用前瞬时离心2s 步骤: 1)加入核酸酶free水至装有DNA片段的1.5mL离心管中,至总体积为79μL 2)向体系中加入20μL 5×末端修复buffer,1μL末端修复酶,总体积为100μL 3)室温放置20min 3.2 片段纯化 片段纯化使用Agencourt AMpure XP Kit进行 步骤: 1)加入180μL Agencourt AMpure XP Reagent beads于经过末端修复的1.5mL离心管中,充分混匀,室温放置5min

(整理)人类基因组计划.

人类基因组计划 HGP(Human Genome Projects) 1、HGP简介 ?人类基因组计划是由美国科学家于1985年率先提出、于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。 ?诺贝尔奖获得者Renato Dulbecco于1986年发表短文 《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。 ?文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome) ?基因组就是一个物种中所有基因的整体组成 ?人类基因组有两层意义: ——遗传信息 ——遗传物质 ?从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。 人类染色体 HGP的诞生 ?1984年12月Utah州的Alta,White R受美国能源部的委托,主持召开了一个小型会议,讨论DNA重组技术的发展及测定人类整个基因组的DNA序列的意义。 ?1985年6月,在美国加州举行了一次会议,美国能源部提出了“人类基因组计划”的初步草案。?1986年6月,在新墨西哥州讨论了这一计划的可行性。随后美国能源部宣布实施这一草案。?1987年初,美国能源部与国家医学研究院(NIH)为“人类基因组计划”下拨了启动经费约550万美元,1987年总额近1.66亿美元。同时,美国开始筹建人类基因组计划实验室。 ?1989年美国成立“国家人类基因组研究中心”。诺贝尔奖金获得者J.Waston出任第一任主任。?1990年,历经5年辩论之后,美国国会批准美国的“人类基因组计划”于10月1日正式启动。美国的人类基因组计划总体规划是:拟在15年内至少投入30亿美元,进行对人类全基因组的分析。 HGP诞生过程中的质疑 ?计划的必要性问题 ?计划的现实性问题 ?科学研究领域的选择问题 ?为什么不选择基因组小的或有经济意义的生物 ?认为?°制图?±是在沙漠里建公路,?°测序?±是把?°垃圾?±分类,选择?°模式动物?±是拼凑?°诺亚方舟?±。

有关药物基因组学的看法

有关药物基因组学的看法 药物基因组学是以药物效应和安全性为主要目标 ,研究药物体内过程差异 的基因特性,以及基因变异所致的不同病人对药物的不同反应 ,从而研究开发新的药物和合理用药方法的一门新学科。它是基于功能基因组学与分子药理学,从基因水平研究人类个体对药物效应不同的分子机理的学科。药物基因组学的创立,为研究高效、特效药物开辟了新的途径,为患者或特定人群寻找合适的药物及适宜的用药方法。随着1997法国成立了世界第一家独特基因与制药公司和2003 完成了人类历史上每个人的基因都是来自于父母,除了少部分的变异,大部分是一成不变的,由于很多人都会存在某些地方的基因缺陷,所以患上某些疾病的几率会比正常人大很多。而药物基因组学就是针对某个人或某类人专门设计出的药物,从而治疗这些人得上的特有的疾病。王老师曾在课堂上说过有关于东亚人种和欧美人种对于消化牛奶上的区别,并认为东亚人缺少充分消化牛奶的基因,并且以自身举例说喝了牛奶以后特别不舒服。我认为这就是关于基因组差异的一个具体体现。第一个人类基因组序列的测定和图谱的绘制。药物基因组学也走上了快速发展之路。 下面,我想说两点,一是药物基因组学其他科学的关系。二是药物基因组学和新药开发的关系。 一、药物基因组学其他科学的关系 药物基因组学与药物遗传学。药物基因组学虽然起源于药物遗传学,但两者在诸多方面有所不同,要表现在:1研究范畴:尽管两者都是研究基因的遗传学变异与药物反应关系的学科, 但药物遗传学主要集中于研究单基因变异, 特别是药物代谢酶基因变异对药物作用的影响。而药物基因组学除了覆盖药物遗传学研究范畴外,还包括与药物反应有关的所有遗传学标志,药物代谢靶受体或疾病发生链上诸多环节。2应用领域:一般来说,药物基因组学可应用于从药物发现、开发到临床应用的各个领域,较药物遗传学更广。 药物基因组学与基因组学相关学科。人类基因组学研究包括系统地测定和鉴别所有人类基因及基因产品,分析人类基因遗传学变异及不同基因在不同健康或疾病状态下的表达等。药物基因组学利用基因组学研究技术和方法,研究具有不同基因特征人群对药物治疗的反应,它是基因组学在药物开发和药物治疗学领域

人类基因组用户指南

人类基因组用户指南 编者:人类基因组计划将于2003年完成,人类基因组数据库成为人类的巨大财富。它对所有公众开放,每个人都有权免费使用这些强大的资源,从而成为生物医学研究者必不可少的工具。但是,面对日益增长的浩瀚的数据海洋,怎样有效地利用它而不至于迷失其中,是一个严峻的问题。据wellcome Trust去年的一项调查,使用序列数据库的研究人员中,只有一半的人能够完全熟悉基因组数据库提供的服务。针对这种情况,今年9月份,Nature genetics特别出了一本“人类基因组用户指南”,以提问的形式详细讲解了人类基因组数据库的结构和使用方法,带领我们一步步深入其中,获取有用的信息。它是我们开启人类基因组数据宝库的一把金钥匙。我们将节选一些内容介绍给读者,希望对大家有所帮助。读者也可以上Nature杂志网站(http://www.nature.com)看原文,这本用户指南的电子版是免费的。 问题1:如何找到一个感兴趣的基因并确定其结构?一旦基因在图谱上被定位,又如何方便地检测到同一区域的其它基因? 可借此问题介绍3个主要的基因组浏览器。将利用所有3个站点对基因ADAM2进行检测,使读者能对每个站点提供的信息之间的细微的区别有一个正确的认识。 1. 国立生物技术信息中心(NCBI)图谱浏览器(Map Viewer) 可以通过NCBI主页进入NCBI 的人类图谱浏览器,网址为http://www.ncbi.nlm.nih.gov/。点击右栏标有“Human map viewer”的超级链接即可进入图谱浏览器的主页。页面上端的符号标明此为Build 29,或NCBI人类基因组的第29次数据装配。Build 29是以2002年4月5日的序列数据为基础而建立的。在它之前的基因组装配称为Build 28,以2001年12月24日的序列数据为基础而建立。想要寻找图谱上的任何信息,比如基因符号、基因库的登录号、标记物名称或疾病名称,只需在“Search for”窗口输入相应的术语名,然后点击“Find”即可。例如,输入“ADAM2”然后点“Find”。而染色体栏“on chromosome(s)” 的窗口会空出以进行基于文本的查找。 结果,浏览器的页面显示了所有人类染色体的示意图,并用指针指出ADAM2在第8号染色体短臂上的位置。搜寻结果表明基因存在于两种NCBI图谱上,Genes_cyto 和Genes_seq。Genes_cyto 指细胞遗传学图谱,而Genes_seq指序列图谱,点击任易一种链接将打开相应的图谱。 这方面及其它NCBI图谱的详细介绍可通过http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/humansearch.html.进行查找。若需要了解关于ADAM2更多的情况包括所有可利用的图谱,点击“Map element” 内相应的选项(本例为ADAM2),将会显示ADAM2及少数8p11.2上的相邻序列。三种图谱都将在本视图显示并将在下面进行详细说明,其它例子所用的图谱可通过Maps & Options附加到本视图。 最右边的图谱为主要图谱,此图谱提供了最详细的资料。本例中的主要图谱即为

药物基因组学相关数据库

药物基因组学数据库 1、Drugbank 2、dgidb 3、pharmGKB 4、cancercommon 5、ChEMBL 6、mycancergenome 7、TTD 8、guidetopharmcology 9、clearityfoundation 10、CIViC 11、DoCM 1 Drugbank 药物和药物靶标资源库。DrugBank是一个独特的生物信息学/化学信息学资源,它结合了详细的药物(例如化学制品)数据和综合的药物靶点(即:蛋白质)信息。该数据库包含了超过4100个药物条目,

包括超过800个FDA认可的小分子和生物技术药物,以与超过3200个试验性药物。此外,超过1.4万条蛋白质或药物靶序列被链接到这些药物条目。每个DrugCard条目包含超过80个数据域,其中一半信息致力于药物/化学制品数据,另一半致力于药物靶点和蛋白质数据。许多数据域超链接到其他数据库(KEGG、PubChem、ChEBI、Swiss-Prot 和GenBank)和各种结构查看小应用程序。该数据库是完全可搜索的,支持大量的文本、序列、化学结构和关系查询搜索。DrugBank的潜在应用包括模拟药物靶点发现、药物设计、药物对接或筛选、药物代谢预测、药物相互作用预测和普通药学教育。DrugBank可以在使用。广泛应用于计算机辅助的药物靶标的发现、药物设计、药物分子对接或筛选、药物活性和作用预测等。 在查询中,每一种药物对应1个DrugCard,即我们所得到的检索结果。每一个DrugCard都包含的数据信息分为药物、靶标和酶三部分。 药物信息包括了该药物的CAS号、商品名、分子式、分子量、SMILES、2D和3D结构、logP、logS、pKa、熔点、吸收性、Caco-2细胞穿透性、药物类别和临床使用、性质描述、剂型与给药途径、半衰期、体内的生物转化、毒性、作用于哪些生物体、食物对服用的影响、与其它药物的相互作用、作用机理、代谢途径、药理学特征、与蛋白质的结合情况、溶解度、物质形态、同义词、关于合成的相关文献等,还与ChEBI、GenBank、PubChem等外部数据库有链接。 靶标的信息包括ID、名称、靶标基因的名称、蛋白质序列、残

材料基因组

材料基因组计划(MGI) 专题学习报告 材料基因组计划是人类经过信息技术革命后,充分认识到材料革新对技术进步和产业发展的重要作用,以及在复兴制造业的战略背景下提出来的。其主要目的是试图把新材料的开发周期缩短一半,打造全新环形开发流程,推动材料科学家重视制造环节,并通过搜集众多实验团队以及企业有关新材料的数据,代码,计算工具等,构建专门的数据库实现共享,致力于攻克新材料从实验室到工厂这个放大过程中的问题。材料基因组计划主要包括四大系统:材料超级计算系统,材料性能扫描测试技术系统和材料设计性能数据库与信息平台系统。[1] 图1材料连续发展示意图 一,国外研究进展 2011年6月24日,美国总统奥巴马宣布了一项超过5亿美元的先进制造业伙伴关系—计划(AMP),希望通过政府高校科研院所和企业合作来振兴强化美国的制造业先进制造业伙伴关系计划包括四个子计划:(1)用于提高美国国家安全相关行业的制造业水平投入3亿美元包括小型大功率电池先进复合材料金属加工生物制造和替代电池等新型技术产业(2)材料基因组(Materials Genome Initiative,MGI)计划通过在研究培训和基础设施方面超过1亿美元的投资,使发现开发和应用先进材料的速度提高到目前的2倍先进材料又将推动数十亿美元的新兴先进制造清洁能源和国家安全等领域的相关技术,简言之,MGI 是AMP 的基础,缩短了先进材料的开发和应用周期,才有可能掀起制造业的又一次伟大革命新型高端材料与信息技术的结合,才是第三次工业革命产业范式转变的坚实基础(3)投资7000 万美元研制下一代机器人技术(4)开发创新的高效的能源制造工艺,将耗资1.2亿美元开发创新的制造工艺和材料,使企业降低成本,减少能源消耗材料基因组计划是先进制造业伙伴关系计划的主要基础部分,新兴材料才是新型制造业的基础MGI 的实施正是抓住了AMP 计划实施的关键,是重中之重。 2011年6月底,白宫发布了美国国家科学技术委员会起草的“材料基因组计划”白皮书(Materials Genome Initiative,MGI)。白皮书提出,要实现材料领域发展模式的转变,把新材料研发和应用的速度从目前的10~20年缩短为5~10年。[2] 白宫自去年6月底推出材料基因组计划的白皮书后,目前正向相关国家实验室、大学等机构征求政策建议。

基因组学在药物方面的研究进展

基因组学在药物方面的研究进展 摘要:药物基因组学可以说是基因功能学与分子药理学的有机结合,在很多方面这种结合是非常必要的。药物基因组学区别于一般意义上的基因学,它不是以发现人体基因组基因为主要目的,而是相对简单地运用已知的基因理论改善病人的治疗。也可以这么说,药物基因组学以药物效应及安全性为目标,研究各种基因突变与药效及安全性的关系[1]。正因为药物基因组学是研究基因序列变异及其对药物不同反应的科学,所以它是研究高效、特效药物的重要途径,通过它为患者或者特定人群寻找合适的药物,药物基因组学强调个体化;因人制宜,有重要的理论意义和广阔的应用前景。 关键词:基因组学;药物;进展;基因多态性;SNP 概述: 同一种药物对患有相同疾病的不同患者疗效不同是临床上常见的一种现象,以往的观点认为这是由于药代动力学的差异造成的。最近的研究表明,药效学原因所产生的差异更为广泛和显著,而药效学差异大多源于基因的差异。为此,提出了“药物基因组学”这个全新的概念[2]。药物基因组学以基因多态性为基础,而基因多态性是指群体中正常个体的基因在相同位置上存在差别(如单碱基差别,或单基因、多基因以及重复序列数目的差别),这种差别出现的频率大于1%。药物基因组学研究药物效应的个体间差异,针对不同个体基因型进行个性化治疗。其研究内容包括药物效应的基因型预测和基因组学在医药上的应用,在分子水平上证明和阐述药物疗效、药物作用的靶位、作用模式和毒副作用[3]。药物基因组学不是以发现新的基因和探索疾病的发生机理为主要目标,而是以探讨药物作用的遗传分布,确定药物作用靶点来满足临床上最佳的药物效应及安全性为目标。药物基因组学除了具有药物遗传学研究的遗传多样性引起对药物或有毒物质反应的差异外,还研究基因多样性与药效的关系,以及个体差异与同种药物不同作用靶点的关系等[4]。 药物基因组学涉及的研究大体可分为个阶段:首先检测一些候选基因,寻找等位缺失以及造成的生物学后果;其次借助现有分子遗传学等技术,同时进行更多候选基因的研究;最后进行基因组水平的关联分析[5]。 在药物基因组学的研究过程中,由于基因组学规模大、手段新、系统性强,可以直接加速新药的发现。另外,由于新一代遗传标记物的大规模发现,以及将其迅速应用于群体,使流行病遗传学可以大大推进多基因遗传病和常见病(往往是多基因病)机理的基础研究,其研究成果可以为制药工业提供新的药靶。这里所谓的新一代遗传标记物,就是单碱基多态性(SNP)。 研究方法和技术: 药物基因组学研究的主要策略包括选择药物起效、活化、排泄等过程相关的候选基因,寻找变异基因序列,确定基因对药物效应的多态性。方法学上依赖于药理学、生物化学、遗传学及基因组学,其中特别需要高效的基因变异检测方法,即从众多的个体中获得某等位基因产物,检查其变异,并确定变异基因的序列变化[6]。主要应用技术:表型和基因型分析;连锁分析和关联分析;药物效应图谱;单核苷酸多态性;芯片技术;表达水平多态性分析等[7]。 进展: 目前药物基因组学方面有很多研究发展的空间,研究方向有很多种。 例如G蛋白偶联受体:G蛋白偶联受体种类很多,β2-肾上腺素受体为其中研究较多的一类,它有三种多态性可改变受体功能:Arg16Gly、Glin27Glu、Thr164Ile。β2-肾上腺的素

9 人类基因组研究

9.1人类基因组计划简介 人类基因组计划(human genome project, HGP)是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法国、德国、日本和我国科学家共同参与了这一价值达30亿美元的人类基因组计划。这一计划旨在为30多亿个碱基对构成的人类基因组精确测序,发现所有人类基因并搞清其在染色体上的位置,破译人类全部遗传信息。与曼哈顿原子弹计划和阿波罗登月计划并称为三大科学计划。 1986年,诺贝尔奖获得者Renato Dulbecco发表短文《肿瘤研究的转折点:人类基因组测序》(Science, 231: 1055-1056)。文中指出:如果我们想更多地了解肿瘤,我们从现在起必须关注细胞的基因组。…… 从哪个物种着手努力?如果我们想理解人类肿瘤,那就应从人类开始。……人类肿瘤研究将因对 DNA 的详细知识而得到巨大推动。” 什么是基因组(Genome)?基因组就是一个物种中所有基因的整体组成。人类基因组有两层意义:遗传信息和遗传物质。要揭开生命的奥秘,就需要从整体水平研究基因的存在、基因的结构与功能、基因之间的相互关系。

为什么选择人类的基因组进行研究?因为人类是在“进化”历程上最高级的生物,对它的研究有助于认识自身、掌握生老病死规律、疾病的诊断和治疗、了解生命的起源。 在人类基因组计划中,还包括对五种生物基因组的研究:大肠杆菌、酵母、线虫、果蝇和小鼠,称之为人类的五种“模式生物”。 HGP的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。 HGP的诞生和启动: 对人类基因组的研究在70年代已具有一定的雏形,在80年代在许多国家已形成一定规模。 1984年在Utah州的Alta,White R and Mendelsonhn M受美国能源部(DOE)的委托主持召开了一个小型专业会议讨论测定人类整个基因组的DNA序列的意义和前景(Cook Deegan RM,1989) 1985年5月在加州Santa Cruz由美国DOE的Sinsheimer RL主持的会议上提出了测定人类基因组全序列的动议,形成了美国能源部的“人类基因组计划”草案。 1986年3月,在新墨西哥州的Santa Fe讨论了这一计划的可行性,随后DOE 宣布实施这一计划。 1986年遗传学家McKusick V提出从整个基因组的层次研究遗传的科学称为“基因组学” 1987年初,美国能源部和国立卫生研究院为HGP下拨了启动经费约550万美元(全年1.66亿美元) 1988年,美国成立了“国家人类基因组研究中心”由Watson J出任第一任主任

最新 美欧材料基因工程计划研究现状及启示-精品

美欧材料基因工程计划研究现状及启示 材料基因工程的研究受到了包括美国、欧洲、日本等在内的世界主要发达国家地区的重视,以下是想备搜集整理的一篇探究美欧材料基因工程计划研究内容的,欢迎阅读查看。 1研究背景 新材料的发展长期以来采用的是通过以经验、半经验为基础的传统“炒菜”式实验来摸索,并给予确认的研究模式。这种模式的效率很低,已经难以适应当前世界各国经济快速发展的需求,而且需耗费大量的资源、能源和人力,非常不经济。材料科学家一直在寻求研究和发展新材料的更快速、更经济、更有效的新途径。凝聚态物理的多体相互作用模型及理论的重大进展、计算物科和方法体系的建立、科学和技术的飞速进步等,使得对材料的结构进行计算预测及其性能模拟计算日益成为必要和可能。 美国、欧盟、日本、新加坡、中国等世界主要国家/地区都非常注重材料计算与模拟的发展,组织实施了一系列相关的研究计划和项目。始于2001年的美国能源部“高级计算科学发现项目”是开发新一代科学模拟计算机的综合计划[1].早在2003年,美国国家研究委员会针对美国国防部对材料与制造研究的需求进行了研究,并推荐将计算材料设计研究作为投资的主要方向。欧洲科学基金会的“材料的从头算模拟先进概念”计划(AB-initioSimula-tionsofMaterials,Psi-k2)致力于开发凝聚态材料在原子层级的“从头算”计算方法[2],“生物系统与材料科学的分子模拟”则关注开发计算工具,用于了解生物系统以及人工纳米材料的介观结构。 2002年,日本文部科学省启动纳米生物技术、能源和环境领域“生产技术先进仿真软件”的开发;2009年,开始“间隙控制材料设计和利用技术”;同年,文部科学省和经济产业省联合推行“分子技术战略”[3].新加坡高性能计算研究院开发的APEX(AdvancedProcessExpert)数据挖掘技术已被用于解决工业问题,研究内容包括计算化学、多尺度建模、固态电子学和纳米结构等。 2011年6月24日,美国总统奥巴马宣布了一项超过5亿美元的“先进制造业伙伴关系”计划,其中一项举措就是实施“材料基因组计 划”(MaterialsGenomeInitiative,MGI);几乎是同时,欧洲也启动了“加速冶金”(AcceleratedMetallurgy,AccMet)计划。这两项大型的研究计划都意在加速材料研发和应用的速度,并通过降低研发成本和周期降低失败风险。美国试图打造全新“环形”开发流程,推动材料科学家重视制造环节,并通过搜集众多实验团队以及企业有关新材料的数据、代码、计算工具等,构建专门的数据库实现共享,致力于攻克新材料从实验室到工厂这个放大过程中的问;欧洲则认为,在过去一万年,对人类的技术进步,相比其他材料,金属和合金贡献最大,加之欧盟历来重视防范原材料的风险,因而此次专注于高性能合金的开发。表1所示是美国、欧洲正在开展的材料基因组相关研究的概况对比。【1】

人类基因组计划论文

人类基因组计划的重要性 “以破解人类遗传和生老病死之谜,解决人类健康问题为目的的人类基因组计划,对人类自身的生存和发展具有重要的意义。其旨在通过测定人类基因组DNA约3×109对核苷酸的序列,探寻所有人类基因并确定它们在染色体上的位置,明确所有基因的结构和功能,解读人类的全部遗传信息,使得人类第一次在分子水平上全面认识自我。” 基因作为掌控人类自身性状、特征和遗传的根本因子,以其简单的双螺旋结构、复杂的排列方式,使全世界范围内的每一个人类都有着相同的本质和不同的特质。基因的轰动范围极为广泛,我们身上的每一处体态特征几乎都由基因所决定,大到一个人的身高、外貌,小到一颗牙形的状,甚至是一根头发的直径都与基因有着密不可分的联系。众所周知,基因由五种碱基对以庞大的数量按一定顺序排列组合而成,其本质是核糖核苷酸和脱氧核糖核苷酸。在一个活跃的细胞内,特定的基因通过解旋、转录、翻译等一系列过程,来实现RN A、蛋白质等相应物质的合成,这些数以万计的不同形态不同功能的RN A、蛋白质在细胞内外发挥出他们自身的作用,从而达到控制人类机体、完善结构功能、协调组织器官运作的神奇效果。 由以上的事实我们可以看出,要想解开人类自身的秘密,就要从破解基因的密码做起。 人类基因组计划便应运而生了。该计划是由美国科学家于1985年率先提出,于1990年正式启动的。美国、英国、法兰西共和国、德意志联邦共和国、日本和我国科学家共同参与了这一预算达30亿美元的人类基因组计划。按照这个计划的设想,在2005年,要把人体内约10万个基因的密码全部解开,同时绘制出人类基因的谱图。换句话说,就是要揭开组成人体4万个基因的30亿个碱基对的秘密。人类基因组计划与曼哈顿原子弹计划和阿波1罗计划并称为三大科学计划。 “HDP(人类基因组计划)的目的是解码生命、了解生命的起源、了解生命体生长发育的规律、认识种属之间和个体之间存在差异的起因、认识疾病产生的机制以及长寿与衰老等生命现象、为疾病的诊治提供科学依据。”

药物基因组学浅析

药物基因组学浅析 药学系曾邦国陈曦 摘要:药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科。本文综述了药物基因组学的研究方法和手段以及在合理用药、新药开发等多方面的应用情况,并介绍了药物基因组学产品。 关键词:药物基因组学;合理用药;新药开发。 2011年11月17-18日,第一届全国药物基因组学大会暨中国药理学会药物基因组学专业委员会举行了第一次全体会议。这标志着标志着我国药物基因组学和个体化医疗的研究和应用迈入一个新的发展阶段。 1 药物基因组学的定义及其由来 药物基因组学区别于一般意义上的基因学,它不是以发现人体基因组基因为主要目的,而是相对简单地运用已知的基因理论改善病人的治疗。也可以这么说,药物基因组学是以药物效应及安全性为目标,研究各种基因变异与药效及安全性的关系。它是一门研究影响药物吸收、转移、代谢、消除、效应等个体差异的基因特性,即决定药物行为和敏感性的全部基因的新学科;主要阐明药物代谢、药物转运和药物靶分子的基因多态性与药物效应及不良反应之间的关系,并在此基础上研制新的药物或新的用药方法。 2 药物基因组学的研究方法和手段 目前药物基因组学的研究方法有:第一,构建全基因组基因多态性图谱;第二,发现各种疾病和各种药物反应表现型差异与基因多态性的统计关联;第三,根据基因多态性对人群或患者进行疾病易感性和药物反应分类,并开发这种诊断试剂盒;第四,在临床上,针对易感人群进行疾病防治,针对不同药物反应的患者进行个性化治疗。[3]药物基因组学通常采用两种研究手段。第一种即“候选基因”策略,第二种是基因组范围内遗传标志物和药物反应表型之间的关联研究。“候选基因”策略,主要是在给定某一药物的条件下,比较有反应者及无反应者靶基因多态性出现的频率。该方法的一个局限性是候选基因的选择需以给定药物的假定作用机制和(或)所治疗疾病的病理生理学为根据。因此,该方法的成功建立在上述假设的真实性上,且不能鉴定那些根据药物作用或疾病生物学难以预测的新基因。基因组范围内遗传标志物和药物反应表型之间的关联研

2017人类基因组研究.doc

(一)阅读《人类基因组研究》,完成习题。 有关人士认为,“人类基因组草图”的测绘成功仅仅预示着一个新的开端,真正的研究工作还只刚刚起步。例如“草图”中留下了许多空白需要填补,不少可能包含着重要医学信息的空白又顽固地拒绝“泄露各自的秘密”。除了最先完成的22号染色体长臂中有3%被证明无法解读外,从那时以来完成的4号染色体也留有很多空白。此外,大约有10%的基因组由于其重复性而根本不可能测序。 据国外有关杂志报道,即使到2003年“人类基因组计划”完成了终图,漏洞依然会存在——某些基因将被忽略不计。而蛋白质作为生命分子三联体的最后一位“成员”,又是迄今为止的研究中最难攻克的堡垒。 全人类只有一个共同的基因组,但是由于各种内外因素的作用,世界上每个人都有差别,这种差别被称为单核苷酸多态性。目前,生物学家己能利用单个DNA中的变体来跟踪人体基因的变异,并藉此评估人类各种生物学现象的奥秘,如健康状况、对疾病的易感性、寿命的长短、人类的起源等等。 人类的大部分DNA都是“垃圾”,几乎不起什么作用或者至少是没有明显的用途。剩下的则是渊源于植物、动物甚至细菌这一最原始生命形式的基因的“大杂烩”。事实上,大量在维系细胞基本功能,如修补和解读DNA方面所必需的基因,与促使细菌保持原状的基因没有什么两样。 我们在回溯生物进化史的过程中又会发现,人类曾与植物、动物以及软体虫和有翅昆虫共同分享无数的基因。例如一种古怪的取名为“声波刺猬”的基因,它对昆虫在成熟中的翅膀生长和发育起着重要作用。这一相同的基因,在人的胚胎中则起着协调手臂生长和发育的作用。所以,人类的基因与某些哺乳动物更为接近也就不足为怪了。例如鼠的基因与人极为相似,它的基因组一直被描述为探明人类基因组的“罗塞塔石碑”(即为解读古埃及象形文字提供线索的石碑)。此外,猩猩的DNA也与人只相差1.5%,因而分析这一看似微不足道的差异,自然有助于揭示人之所以为人的奥秘。 看来,不同物种似乎是通过长期复制、改良和组合现存基因而获得进化的。正是这种逐渐从多细胞有机物中汲取新鲜养分的“复制”过程,才使人类不断进化以至于成为超越低级生命形式的高级动物。所以,有专家将基因比作砖块,“用它既能修车库,也可盖摩天大楼,关键是看你如何运用”。 1.下列对人类基因组研究的描述,最准确的一项是( ) A.据国外有关杂志报道,即使到2003年“人类基因组计划”完成了终图,漏洞依然会存在——很多基因无法解读。 B.“人类基因组草图”的测绘成功仅仅预示着一个新的开端,真正的研究工作还只刚刚起步。 C.人类基因组草图只能描绘90%的基因组,因为大约有10%的基因组由于其重复性而根本不可能测序。 D.迄今为止的研究中,只有作为生命分子三联体的最后一位“成员”——蛋白质尚未攻克。 2.下列对“不同物种似乎是通过长期复制、改良和组合现存基因而获得进化的”这句话的理解,错误的一项是( ) A.我们在回溯生物进化史的过程中又会发现,人类曾与植物、动物以及软体虫和有翅昆虫共同分享无数的基因。 B.人与老鼠的基因极为相似,猩猩的DNA也与人只相差1.5%,人之所以为人的奥秘就在于通过长期复制、改良和组合现存基因而获得进化的。 C.这种逐渐从多细胞有机物中汲取新鲜养分的“复制”过程,才使人类不断进化以至于

美国材料基因组计划 简介

美国材料基因组计划简介 东北大学秦高梧 2012年11月1日 一、项目背景 自上个世纪八十年代起,技术的革新和经济的发展越来越依赖新材料的进步。目前,从新材料的最初发现到最终工业化应用一般需要10~20年的时间。例如,作为目前移动电子设备所用的Li电池,从上世纪70年代中期实验室原型到90年代晚期应用,前后花了近20年时间,但是至今还没能应用到电动汽车上,很明显,新材料的研发步伐严重滞后于产品的设计。 当前,面对竞争激励的制造业和快速的经济发展,材料科学家和工程师必须缩短新材料从发现到应用的研发周期,以期来解决21世纪的巨大挑战。然而,当前的新材料研发主要依据研究者的科学直觉和大量重复的“尝试法”实验。其实,有些实验是可以借助现有高效、准确的计算工具,然而,这种计算模拟的准确性依然很弱。制约材料研发周期(图1)的另一因素是从发现、发展、性能优化、系统设计与集成、产品论证及推广过程中涉及的研究团队间彼此独立,缺少合作和相互数据的共享以及材料设计的技术有待大幅度提升。 图1 新材料研发周期示意图 二、项目的目标 最近在工程领域出现的集成材料计算与计算机技术相结合范例表明,可以把现有的材料研发周期20~30年缩短到2~3年。《材料基因组计划》拟通过新材料研制周期内各个阶段的团队相互协作,加强“官产学研用”相结合,注重实验技术、计算技术和数据库之间的协作和共享(利益通过学习标识以解决知识产权问题),目标是把新材料研发周期减半,成本降低到现有的几分之一,以期加速美国在清洁能源、国家安全、人类健康与福祉以及下一代劳动力培养等方面的进步,加强美国的国际竞争力。《材料基因组计划》项目在2012年已投入1亿美元。整个目标和具体内容如图2所示。 图2 美国《材料基因组计划》的整个目标和具体内容 三、主要内容 3.1 材料计算手段 目前,从电子到宏观层面都有各自的材料计算软件,但是还不能做到高效跨尺度计算以达到材料性能预测的目的;各个软件之间彼此不兼容;由于知识产权问题,彼此不能共享计算工具的源代码。在这方面未来的工作主要集中在以下几个方面: (1)建立准确的材料性能预测模型,并依据理论和经验数据修正模型预测; (2)建立开放的平台实现所有源代码共享; (3)开发的软件界面友好,以便进一步拓展到更多的用户团体。 3.2 实验手段 (1)实验为弥补理论计算模型的不足和构架不同尺度计算间的联系; (2)补充非常基础的材料物理,化学和材料学的数据,涉及材料的电子,力学,光学等性能数据,构建材料性能相关的成分,组织和工艺间内在联系,并建立庞大的数据库;

相关主题