当前位置:文档之家› 第七章 线性变换

第七章 线性变换

第七章 线性变换

数字信号处理期末试卷(含答案)

一、 填空题(每题2分,共10题) 1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再 进行幅度量化后就是 信号。 2、 2、 )()]([ω j e X n x FT =,用)(n x 求出)](Re[ω j e X 对应的序列 为 。 3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。 4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。 5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。 6、FFT 利用 来减少运算量。 7、数字信号处理的三种基本运算是: 。 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2 )4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。 9、数字滤波网络系统函数为 ∑=--= N K k k z a z H 111)(,该网络中共有 条反馈支路。 10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。 二、 选择题(每题3分,共6题) 1、 1、 )6 3()(π-=n j e n x ,该序列是 。 A.非周期序列 B.周期 6π = N C.周期π6=N D. 周期π2=N 2、 2、 序列 )1()(---=n u a n x n ,则)(Z X 的收敛域为 。 A. a Z < B. a Z ≤ C. a Z > D. a Z ≥ 3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y , 19,1,0),()()(Λ=?=k k Y k X k F ,19,1,0)],([)(Λ==n k F IDFT n f , n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。 A.70≤≤n B.197≤≤n C.1912≤≤n D.190≤≤n 4、 4、 )()(101n R n x =,) ()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可 能的少,应使DFT 的长度N 满足 。 A.16>N B.16=N C.16

第7章 线性变换

第7章 线性变换 §1 线性变换的定义 线性空间V 到自身的映射,通常叫做V 的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。 一、线性变换的定义 定义7.1 设V 为线性空间,若对于V 中的任一向量α,按照一定的对应规则T ,总有V 中的一个确定的向量β与之对应,则这个对应规则T 称为线性空间V 中的一个变换,记为 βα=)(T 或 )(,V T ∈=αβα, β称为α的象,α称为β的原象。象的全体所构成的集合称为象集,记作T (V ),即 T (V )={}V T ∈=ααβ|)(。 由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。 定义7.2 线性空间V 中的变换T ,若满足条件 (1) 对任意V ∈βα,有 (2) )()()(βαβαT T T +=+; (3) 对任意V ∈α及数域P 中任意数k 有 )()(ααkT k T =,

则称变换T 为V 中的线性变换。 例7.1 线性空间V 中的恒等变换或称单位变换E ,即 E )()(V ∈=αα α 以及零变换?,即 ?)(0 )(V ∈=αα 都是线性变换. 例7.2 设V 是数域P 上的线性空间,k 是P 中的某个数,定义V 的变换如下: V k ∈→ααα,. 这是一个线性变换,称为由数k 决定的数乘变换,可用K 表示.显然当1=k 时, 便得恒等变换,当0=k 时,便得零变换. 例7.3 在线性空间][x P 或者n x P ][中,求微商是一个线性变换.这个变换通常用D 代表,即 D ()(x f )=)(x f '. 例7.4 定义在闭区间[]b a ,上的全体连续函数组成实数域上一线性空间,以),(b a C 代表.在这个空间中变换 ?()(x f )=?x a dt t f )( 是一线性变换.

DLT 直接线性变换解法程序

DLT 直接线性变换解法程序介绍 一、程序综合介绍:DLT结算程序 程序功能介绍:应用6个已知点计算左右片l 系数;然后应用已经求得的l系数求解物方空间坐标系坐标 程序名:SuYGDLT 程序界面: 程序界面有四个按钮,分别为读取文件,左片l系数计算,右片系数计算,物放坐标解算程序界面有四个编辑框,分别用来输出文件信息,左片l系数、右片l系数、以及无妨坐标结果 截图如下 程序使用介绍: 必须先点击导入文件按钮,导入文件方可进行正确的计算,如果未导入文件就点击左片平差或右片平差或无妨坐标解算就会弹出如下对话框:

读取数据后点击其它按钮进行其它计算。 程序文件格式: 数据文件分为两部分,KnownPoint,UNKnownPoint,分别代表已知点信息和待求点信息当文件读取程序读到“KnownPoint”时开始读取已知点信息,已知点信息格式如下 GCP1,1214.0000,1032.0000,1046.5180,1071.6652,9.201742,-9.672384,-2.726064 分别代表点名、左片相片X坐标、左片相片y坐标、右片相片x坐标、右片相片y坐标物方坐标X、Y、Z; 当文件读取到“END KnownPoint”时结束已知坐标的读取 待求点信息类似:文件格式截图如下: 程序运行结果与评估: 本程序区1-10号点作为已知点计算l近似值11-20号点作为未知点解求其物方三维坐标;

程序运行结果与所给参考值相似,应该可以证明其运算是正确的,运行结果截图如下: 二、程序编程思想及相关代码 程序编程思想及相关函数: 本程序设计DLTCalculation类作为l系数结算主程序,其成员变量及成员函数与作用介绍如下: CSuLMatrix LL;//左片L系数矩阵 CSuLMatrix RL;//右片L系数矩阵 int m_iKnownPointCount;//已知点个数 CControlPoint *m_pKnownPoint;//已知点 int m_iUnKnownPointCount;//未知点个数 CControlPoint *m_pUnKnownPoint;//未知点 public: CString LoadData(const CString& strFileName);//读取文件函数 int ifLoda;//判断是否导入数据 CString Datainfor;//文件信息存储 CString *SplitString(CString str,char split, int& iSubStrs); //分割函数 void LFormApproL(CSuLMatrix &LL);//计算左片L系数近似值 void RFormApproL(CSuLMatrix &RL);//计算右片L系数近似值 void FormLErrorEquations(CSuLMatrix LL,CMatrix &LM,CMatrix &LW);//组成左片系数矩阵和常数项矩阵 void LAdjust();//左片平差主函数 void FormRErrorEquations(CSuLMatrix RL,CMatrix &RM,CMatrix &RW);//组成右片系数矩阵和常数项矩阵 void RAdjust();//右片平差主函数 void Output(const CString& strFileName);//输出结果主程序

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

Matlab+实现直接线性变换

直接线性变换Matlab实现的程序源代码 function re=DLT(A,B) %imco为像方坐标,输入单位是像素 imco=A; %此处为控制点像方坐标,格式为2×n,单位:像素 %obco为物方坐标,输入单位是毫米 obco=B; %此处为控制点物方坐标,格式为n×3单位:毫米 imco_be=[];B=[];M=[]; for i=1:size(imco,2) imco_be=[imco_be;imco(:,i)]; end for i=1:size(imco,2) A1=[obco(i,:),1,0,0,0,0]; A2=[0,0,0,0,obco(i,:),1]; M=[M;A1;A2]; B1=obco(i,:).*imco_be(2*i-1); B2=obco(i,:).*imco_be(2*i); B=[B;B1;B2]; end M=[M,B]; N=M(1:11,:); L=N\(-imco_be(1:11,:)); X0=-((L(1)*L(9)+L(2)*L(10)+L(3)*L(11))/(L(9)*L(9)+L(10)*L(10)+L(11)*L(11))); Y0=-((L(5)*L(9)+L(6)*L(10)+L(7)*L(11))/(L(9)*L(9)+L(10)*L(10)+L(11)*L(11))); L=[L;0];M3=[];W=[]; for i=1:size(imco,2) xyz=obco(i,:); A=xyz(1)*L(9)+xyz(2)*L(10)+xyz(3)*L(11)+1; r2=(imco_be(2*i-1)-X0)*(imco_be(2*i-1)-X0)+(imco_be(2*i)-Y0)*(imco_be(2*i)-Y 0); M1=[A*(imco_be(2*i-1)-X0)*r2;A*(imco_be(2*i)-Y0)*r2]; M2=-[M(2*i-1:2*i,:),M1]/A; M3=[M3;M2]; W=[W;-[imco_be(2*i-1);imco_be(2*i)]/A]; end WP=M3'*W; NBBN=inv(M3'*M3); LP=-NBBN*WP; v=M3*LP+W; imco_be=imco_be+v; X0=-(LP(1)*LP(9)+LP(2)*LP(10)+LP(3)*LP(11))/(LP(9)*LP(9)+LP(10)*LP(10)+LP (11)*LP(11)); Y0=-(LP(5)*LP(9)+LP(6)*LP(10)+LP(7)*LP(11))/(LP(9)*LP(9)+LP(10)*LP(10)+LP (11)*LP(11)); 1

第六章_线性变换_68180769

第六章 线性变换 映射:,X Y ≠?≠?,如果有一个法则σ,它使得X 中每个元素α,在Y 中有唯一确定的元素β与之对应,则称σ为X 到Y 的一个映射,记作:X Y σ→,()σαβ=,β称为α在σ下的象,α称为β在σ下的原象。 注:()(),X στασατα=??∈=对。 变换:一个集合到自身的映射。 线性变换的定义与性质 定义 设V 是数域F 上的线性空间,σ是V 的一个变换,如果满足条件: (1)()()()βσασβασV,α,β+=+∈?; (2)()()k F,αV,k αk σασ?∈?∈=, 则称σ是V 上的线性变换或线性算子。 (1), (2)等价于条件:,,,k l F V αβ?∈∈ ()()()σk αl βk σαl σβ+=+。 例:设σ:n n R R →,定义为()c αασ=,c 为常数。-----数乘 变换或位似变换。 c =0-----零变换,记为o 。 c =1-----恒等变换,记为ε。 例:设σ是把平面上的向量绕坐标原点逆时针旋转θ角的变换 设()()(),,,T T x y x y ασα''==,则

cos sin sin cos x x y y x y θθ θθ'=-??'=+? 记cos sin sin cos A θθθ θ-?? =??? ? ,则()A σαα=是一个线性变换。 例:判断下列变换是否是线性变换 (1) ()()12323,,1,,T T a a a a a σ=; (2) ()()12323,,0,,T T a a a a a σ=; (3) ()()12312231,,2,,T T a a a a a a a a σ=-+; (4) ()()212312 3,,,,3T T a a a a a a σ=. 线性变换的基本性质 (1)()θθσ=; (2)()()ασασ-=-; (3)线性变换保持向量的线性组合关系不变,即若s s αk αk αk β+++=Λ2211,则1122s s βk αk αk ασσσσ=+++L ; 若θ=+++s s αk αk αk Λ2211,则θσσσ=+++s s αk αk αk Λ2211。 (4)线性变换将线性相关的向量组映成线性相关的向量组。 线性变换的运算 ()V L ----线性空间V 上所有线性变换的集合。

高等代数第6章习题解

第六章习题解答 习题6.1 1、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+????=∈= ? ?????;(2),()x x y V f y y αα-????=∈= ? ????? ; (3)2,()x y V f y x y αα+????=∈= ? ?+???? ; (4)0,()x V f y αααα??=∈=+ ???,0V α∈是一个固定的非零向量。 (5)0,()x V f y ααα??=∈= ???,0V α∈是一个固定的非零向量。 解:(1)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (2)是。因为1122(,),(,),x y x y k F αβ''?==?∈,有 (3)不是。因为 而 121211*********()()y y y y f f x y x y x x y y αβ++++??????+=+= ? ? ?+++++?????? 所以()()()f f f αβαβ+≠+ (4)不是。因为0()f k k ααα=+,而000()()kf k k k k ααααααα=+=+≠+ 所以()()f k kf αα≠ (5)不是。因为0()f αβα+=,而00002()()f f αβαααα+=+=≠ 2、设n n V P ?=是数域F 上全体n 阶方阵构成的集合,有§4.5,V 是F 上2 n 维线性空间, 设A V ∈是固定元,对任意M V ∈,定义 ()f M MA AM =+ 证明,f 是V 的一个线性变换。 证明:,,M N V k F ?∈∈,则 所以 f 是V 的一个线性变换。 3、设3 V R =,(,,)x y z V α=∈,定义

第七章 线性变换.

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:σ+τ是V的线性变换. 二. 数乘运算 定义2(P311) 显然kσ也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换σ 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标 之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换σ关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. ξ与σ (ξ)关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

基于直接线性变换算法的普通数码相机检校的应用研究

基于直接线性变换算法的普通数码相机检校的应用研究 孔 建 黄建魏 沈 周 (西南交通大学 四川成都 610031 中铁十局 山东济南 520000) 摘要:本文采用直接线性变换(DLT )算法,完成了普通数码相机检校的应用研究。通过编程实验,解算普通数码相机在不同焦距情况下内方位元素(00,x y ,f )以及畸变参数(径向畸变系数1k ,2k 、偏心畸变系数1p ,2p ),同时对直接线性变换方法中l 初值的问题给出解决方案。提出了解决控制点布设在一个近似平面上解算l 系数初始值的方法,并且依据实验数据分析了在不同焦距下,相机内方位元素和光学畸变参数的变化情况。 关键字:直接线性变换;相机检校;径向畸变;偏心畸变 Abstract In this paper, to complete a common application of digital camera calibration by using the direct linear transformation algorithm. This paper have solved different elements of interior orientation (00,x y ,f )and distortion parameters (Radinal Distortion 1k , 2k ,Decentering Distortion 1p ,2p )of ordinary digital camera focal length by the programming experiments and meanwhile, put forward the solutions of the initial value problem in the direct linear transformation method. Proposed a solution in an approximate control points for solving plane initial value coefficient method, and analyzed the changes of the camera orientation elements and optical distortion parameters in the base of experimental data at different focal lengths. 1 概述 在数字摄影测量中,数字影像的获取,通常采用的是专业的摄影设备。这些专业设备的价格昂贵,对非专业部门是无法应用的。随着数码相机技术的发展与进步,普通数码相机在数字摄影测量领域中得到了广泛的应用,尤其是在近景数字摄影测量、无人机低空摄影测量的应用中,表现出了巨大的优势。普通数码相机不仅价格便宜,且操作方便,是专业摄影机不能比拟的。随着数码相机技术的

35 直接线性变化的基本原理和解算方法.

立体摄影测量的基本原理 421 0011 0010 1010 1101 0001 0100 1011 3.5 直接线性变化的基本原理和解算方法

4 2 1 0011 0010 1010 1101 0001 0100 1011 一、直接线性变化的关系式 111333222333s s s i i i ()()()0()()()()()()0()()(),,,,s a b c i f s s s s s s s s s s s s a X X b Y Y c Z Z x f a X X b Y Y c Z Z a X X b Y Y c Z Z y f a X X b Y Y c Z Z X Y Z X Y Z -+-+-?+=? -+-+-? ? -+-+-? +=?-+-+-? 中心构像方程: 其中:为物点的空间坐标 为光心的空间坐标 ,,(=1,2,3)旋转矩阵 所测x y 像片的主距 ,像点在摄影坐标系的坐标

4 2 1 0011 0010 1010 1101 0001 0100 1011 直接线性变化法 ?直接线性变换(DLT —Direct Linear Transformation )算法是直接建立像点坐标与物点空间坐标关系式的一种算法。 ?该算法在机算中,不需要内、外方位元素。而直接通过像点解算物点。

4 2 1 0011 0010 1010 1101 0001 0100 1011 二、线性误差的修正 1、线性误差: ?底片均匀变形、不均匀变形 ?畸变差 ?x ,y 坐标轴不垂直 2、线性修正?系数 假设主点坐标为(0,0)

利用双线性变换求其离散传递函数

1 设计背景 (1) 1.1 设计目的 (1) 1.2 设计内容和要求 (1) 1.3 设计工作任务及工作量的要求 (1) 2 双线性变换及其原理 (2) 2.1 双线性变换的定义 (2) 2.2 双线性变换的原理 (2) 2.2.1 公式的推导 (2) 2.2.2 公式的验证 (2) 2.2.2 设计步骤 (4) 2.3 双线性变换的主要特性 (6) 3 计算机实现程序框图 (7) 4 理论计算 (8) 5 程序验证 (10) 6 结果分析 (11) 参考文献 (13) 附表程序清单 (14)

1 设计背景 1.1 设计目的 本课程设计以自动控制理论、现代控制理论、MATLAB 及应用等知识为基础,利用双线性变换求连续系统对应的离散化的系统,目的是使学生在现有的控制理论的基础上,学会用MATLAB 语言编写控制系统的离散化的程序,通过上机实习加深对课堂所学知识的理解,掌握一种能方便地对系统进行离散化的设计工具。 1.2 设计内容和要求 1 在理论上对连续系统采用双线性变换求离散化推导出算法和计算公式。 2 画出计算机实现算法的框图。 3 编写程序并调试和运行。 4 以下面的系统为例,进行计算。 已知系统闭环传递函数) 2)(1(4 )(++=s s s s G ,利用双线性变换求其离 散传递函数。 5 分析运算结果(离散化步长对系统性能的影响)。 6 程序应具有一定的通用性,对不同参数能有兼容性。 1.3 设计工作任务及工作量的要求 1 本次课程设计要求每周学生至少见指导教师4次,其中集中辅导答疑部不于3次。 2 设计说明书的格式按设计说明书格式要求,采用word 软件排版,计算机打印。(具体包括:封皮、目录、正文、参考文献等) 3 程序清单用A4纸打印后,作为附录订装在说明书后面。 4 框图和其他图表放在正文中。

第七章线性变换习题答案

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

混沌特性时间序列线性变换理论方法及其应用

文章编号:167422974(2009)022******* 混沌特性时间序列线性变换理论方法及其应用 Ξ 鄂加强,王春华 ,彭 雨,李 娟,龚金科,朱 浩 (湖南大学机械与运载工程学院,湖南长沙 410082) 摘 要:通过对时间序列的相空间的重构,用G-P 算法、Wolf 算法证明了混沌时间序列经过线性变换后其关联维数、Lyapunov 指数以及K olmogorov 熵大小不变,从而得出了线 性变换后混沌时间序列的混沌特性保持不变的结论.同时将这一理论和热力学中的相似实验相结合,验证了实验模型系统进入混沌则实际系统必也能够在相应时刻进入混沌状态.该结论被成功应用到对汽包水位晃荡幅值的测量当中,验证了汽包水位的晃荡幅值具有混沌特性,并成功地对该时间序列进行了预测. 关键词:时间序列;混沌;相空间重构;相似原理 中图分类号:O415.5;T K223.13 文献标识码:A Analysis and Application of the Chaos Character of Time Series after Linear Transformation E Jia 2qiang ,WAN G Chun 2hua ,PEN G Yu ,L I J uan ,GON G Jin 2ke ,ZHU Hao (College of Mechanical and Vehicle Engineering ,Hunan Univ ,Changsha ,Hunan 410082,China ) Abstract :Based on the phase space reconstruction ,the conclusion that the correlative dimension and the Lyapunov exponents of the time series remain unchanged has been proved with G-P algorithm and Wolf algo 2rithm.And this new theory has also proved the establishment of similar experiments for chaos system.Such conclusion has been successfully applied to the analysis of the amplitude of the sloshing of the water level of drum boiler with chaos character.Meanwhile ,the time series have been successfully forecasted. K ey w ords :time series ;chaos ;phase space reconstruction ;the similar principle 自Lorenz [1]1963年发现第一个混沌吸引子以来,混沌理论得到了飞速的发展.混沌理论研究复杂 系统对于初始状态的极度敏感依赖性[2]、拓扑传递性及其系统内部的复杂结构,已经在医学、电路分析、激光研究等领域取得了广泛的应用[3].系统混沌程度越强,系统越复杂.通常描述系统动力学行为是否具有混沌特性的方法主要有:准相图、poincare 截面、饱和关联维数(系统复杂程度的估计量)、Lya 2punov 指数(系统的特征指数)以及K olmogorov 熵(动力系统的混沌水平)等5种[4]. 以相似原理为基础的模型实验方法在流体力学 等各学科中有着广泛的应用,例如,通过飞机模型在风洞中的实验去探索飞机的气动特性;通过舰船模型在试验水池中的实验去研究舰船的阻力特性;通过推进器模型在水洞中的实验去研究推进器的动力特性[5].在许多情况下,由于各方面条件的限制,不可能对原系统进行混沌特性的分析,只能进行相似实验,然而相似实验中,系统的混沌特性参数是否会发生变化这一问题一直鲜有学者探究. 本文主要通过计算饱和关联维数、Lyapunov 指数以及K olmogorov 熵证明了混沌序列线性变换后混沌特性不变,并利用Lorenz 混沌系统方程进行了 Ξ收稿日期:2008-09-11 基金项目:湖南省自然科学基金资助项目(06JJ50103) 作者简介:鄂加强(1972-),男,湖南湘潭人,湖南大学副教授,硕士生导师 通讯联系人,E 2mail :wchhx1987@163.com 第36卷 第2期2009年2月 湖南大学学报(自然科学版)Journal of Hunan University (Natural Sciences )Vol.36,No.2Feb 12009

第七章线性变换总结篇

第 7章 线性变换 7、1知识点归纳与要点解析 一.线性变换的概念与判别 1、线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。 2、线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3、线性变换的性质 设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈L 。 性质1、 ()()00,σσαα==-; 性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。 性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL 也线性无关。 注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L L L L L 记: ()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? L L L L M M M L 于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换, 12,,,m βββL 就是V 中任意一组向量,如果:

第七章 线性变换

MATLAB软件应用第七章线性变换 例1:求矩阵 122 212 221 A ?? ?? =?? ?? ?? 的特征值与特征向量,并将其对角化. 解1:建立m文件v1.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; E=eye(3); syms x f=det(x*E-A) %矩阵A的特征多项式 solve(f) %矩阵A的特征多项式的根,即A的特征值 %所以A的特征值为x1=5,x2=x3=-1. %(1)当x1=5时,求解(x1*E—A)X=0,得基础解系syms y y=5; B=y*E-A; b1=sym(null(B)) %b1为(x1*E—A)X=0基础解系 %(2)当x2=-1时,求解(x2*E—A)X=0,得基础解系y=-1; B=y*E-A; b2=sym(null(B)) %b2为(x2*E—A)X=0基础解系 T=[b1,b2] %所有特征向量在基下的坐标所组成的矩阵 D=T^-1*A*T %将矩阵A对角化,得对角矩阵D 运行结果如下: f = x^3-3*x^2-9*x-5 ans = 5 -1 -1 b1 = sqrt(1/3) sqrt(1/3) sqrt(1/3) b2 = [ sqrt(2/3), 0] [ -sqrt(1/6), -sqrt(1/2)] [ -sqrt(1/6), sqrt(1/2)] T =

[ sqrt(1/3), sqrt(2/3), 0] [ sqrt(1/3), -sqrt(1/6), -sqrt(1/2)] [ sqrt(1/3), -sqrt(1/6), sqrt(1/2)] D = [ 5, 0, 0] [ 0, -1, 0] [ 0, 0, -1] 解2:建立m文件v2.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; d=eig(A) %求全部特征值所组成的向量 [V,D]=eig(A) %求特征值及特征向量所组成的矩阵inv(V)*A*V %A可对角化,且对角矩阵为D 运行结果如下: d = -1 -1 5 V = 247/398 1145/2158 780/1351 279/1870 -1343/1673 780/1351 -1040/1351 1013/3722 780/1351 D = -1 0 0 0 -1 0 0 0 5 ans = -1 * * * -1 * * * 5 例2:求矩阵 110 430 102 A -?? ?? =-?? ?? ?? 的特征值与特征向量,并判别A 是否可以对角化. 解:建立m文件v3.m如下:clc a=[-1 1 0;-4 3 0;1 0 2]; [V,D]=eig(a)

线性代数之线性变换的解释

最近想知道特征值、特征值到底有什么物理意义,搜到了这篇文章,共享一下。。。 来源:孙哲的日志 [1. 特征的数学意义] 我们先考察一种线性变化,例如x,y坐标系的椭圆方程可以写为 x^2/a^2+y^2/b^2=1,那么坐标系关于原点做旋转以后,椭圆方程就要发生变换。我们可以把原坐标系的(x,y)乘以一个矩阵,得到一个新的(x',y')的表示形式,写为算子的形式就是(x,y)*M=(x',y')。这里的矩阵M代表一种线性变换:拉伸,平移,旋转。那么,有没有什么样的线性变换b(b是一个向量),使得变换后的结果,看起来和让(x,y)*b像是一个数b乘以了一个数字m*b? 换句话说,有没有这样的矢量b,使得矩阵A*b这样的线性变换相当于A在矢量b上面的投影m*b? 如果有,那么b就是A的一个特征向量,m就是对应的一个特征值。一个矩阵的特征向量可以有很多个。特征值可以用特征方程求出,特征向量可以有特征值对应的方程组通解求出,反过来也一样。例如,设A为3阶实对称矩阵,a1=(a,-a,1)T是Ax=0的解, a2=(a,1,-a)T是(A+E)x=0的解,a≠2,则常数a=? 因为a1=(a,-a,1)T 是Ax=0的解,说明a1=(a,-a,1)T是A的属于0的特征向量, a2=(a,1,-a)T是(A+E)x=0的解,说明a2=(a,1,-a)T是A的属于-1 的特征向量。实对称矩阵属于不同特征值的特征向量式正交的,所以a^2-a-a=0,a≠2,所以a=0。

还是太抽象了,具体的说,求特征向量的关系,就是把矩阵A所代表的空间,进行正交分解,使得A的向量集合可以表示为每个向量a 在各个特征向量上面的投影长度。例如A是m*n的矩阵,n>m,那么特征向量就是m个(因为秩最大是m),n个行向量在每个特征向量E 上面有投影,其特征值v就是权重。那么每个行向量现在就可以写为Vn=(E1*v1n,E2*v2n...Em*vmn),矩阵变成了方阵。如果矩阵的秩更小,矩阵的存储还可以压缩。再: 由于这些投影的大小代表了A在特征空间各个分量的投影,那么我们可以使用最小2乘法,求出投影能量最大的那些分量,而把剩下的分量去掉,这样最大限度地保存了矩阵代表的信息,同时可以大大降低矩阵需要存储的维度,简称PCA 方法。 举个例子,对于x,y平面上的一个点(x,y),我对它作线性变换,(x,y)*[1,0;0,-1],分号代表矩阵的换行,那么得到的结果就是(x,-y),这个线性变换相当于关于横轴x做镜像。我们可以求出矩阵[1,0;0,-1]的特征向量有两个,[1,0]和[0,1],也就是x轴和y轴。什么意思呢? 在x轴上的投影,经过这个线性变换,没有改变。在y轴上的投影,乘以了幅度系数-1,并没有发生旋转。两个特征向量说明了这个线性变换矩阵对于x轴和y轴这两个正交基是线性不变的。对于其他的线性变换矩阵,我们也可以找到类似的,N个对称轴,变换后的结果,关于这N个对称轴线性不变。这N个对称轴就是线性变换A的N个特征向量。这就是特征向量的物理含义所在。所以,矩阵A等价于线性变换A。

相关主题