当前位置:文档之家› 机械振动(一)

机械振动(一)

机械振动(一)

机械振动(一)

完整版机械振动和机械波测试题

简谐运动,关于振子下列说法正确的是( A. 在a 点时加速度最大,速度最大 B ?在0点时速度最大,位移最大 C ?在b 点时位移最大,回复力最大 D.在b 点时回复力最大,速度最大 5. 一质点在水平方向上做简谐运动。如图,是该质点在0 的振动图象,下列叙述中正确的是( ) A. 再过1s ,该质点的位移为正的最大值 B ?再过2s ,该质点的瞬时速度为零 C. 再过3s ,该质点的加速度方向竖直向上 D. 再过4s ,该质点加速度最大 6. 一质点做简谐运动时,其振动图象如图。由图可知,在 时刻,质点运动的( ) A.位移相同 B .回复力大小相同 C.速度相同 D .加速度相同 7. 一质点做简谐运动,其离开平衡位置的位移 与时间 如图所示,由图可知( ) A.质点振动的频率为4 Hz B .质点振动的振幅为2cm C. 在t=3s 时刻,质点的速率最大 D. 在t=4s 时刻,质点所受的合力为零 8. 如图所示,为一列沿x 轴正方向传播的机械波在某一时刻的图像, 这列波的振幅A 、波长入和x=l 米处质点的速度方向分别为:( 高二物理选修3-4《机械振动、机械波》试题 一、选择题 1. 关于机械振动和机械波下列叙述正确的是:( ) A .有机械振动必有机械波 B .有机械波必有机械振动 C .在波的传播中,振动质点并不随波的传播发生迁移 D .在波的传播中,如振源停止振动,波的传播并不会立即停止 2. 关于单摆下面说法正确的是( ) A. 摆球运动的回复力总是由摆线的拉力和重力的合力提供的 B. 摆球运动过程中经过同一点的速度是不变的 C. 摆球运动过程中加速度方向始终指向平衡位置 D. 摆球经过平衡位置时加速度不为零 3. 两个质量相同的弹簧振子,甲的固有频率是 3f .乙的固有频率是4f ,若它们 均在频率为5f 的驱动力作用下做受迫振动.则( ) A 、振子甲的振幅较大,振动频率为3f B 、振子乙的振幅较大.振动频率为4f C 、振子甲的振幅较大,振动频率为5f D 、振子乙的振幅较大.振动频率为5f 班级: 姓名: 成绩: 4. 如图所示,水平方向上有一弹簧振子, 0点是其平衡位置,振子在a 和b 之间做 t 的关系 )

哈工大机械振动基础大作业

《机械振动基础》大作业 (2015年春季学期) 题目基于MATLAB求系统特性 姓名 学号 班级 专业机械设计制造及其自动化 报告提交日期 哈尔滨工业大学

报告要求 1.请根据课堂布置的2道大作业题,任选其一,拒绝雷同和抄袭; 2.报告最好包含自己的心得、体会或意见、建议等; 3.报告统一用该模板撰写,字数不少于3000字,上限不限; 4.正文格式:小四号字体,行距为倍行距; 5.用A4纸单面打印;左侧装订,1枚钉; 6.课程报告需同时提交打印稿和电子文档予以存档,电子文档由班 长收齐,统一发送至:。 7.此页不得删除。 评语: 成绩(15分):教师签名: 年月日

解多自由度矩阵的认识体会。二、MATLAB程序图: >> m=[]; k1=[]; k=[]; c=[]; c1=[]; for i=1:9 a=input('输入质量矩阵m:'); m(i,i)=a; end ; for j=1:9 b=input('输入刚度系数k:'); k1(1,j)=b; end for l=1:8 k(l,l)=k1(l)+k1(l+1); k(9,9)=k1(9); k(l+1,l)=-k1(l+1); k(l,l+1)=-k1(l+1); k(9,8)=-k1(9);

k(8,9)=-k1(9); end ; syms w; B=k-w^2*m %系统的特征矩阵B Y=det(B); %展开行列式 W=solve(Y); %求解wh lW=length(W); [V,D]=eig(k,m); for I=1:9 for J=1:9 V(J,I)=V(J,I)/V(5,I); end end V W 三 MATLAB结果输入输出: 程序输入内容: 输入质量矩阵m:1 输入质量矩阵m:2 输入质量矩阵m:3 输入质量矩阵m:4 输入质量矩阵m:5 输入质量矩阵m:6 输入质量矩阵m:7 输入质量矩阵m:8 输入质量矩阵m:9 输入刚度系数k:10 输入刚度系数k:11 输入刚度系数k:12 输入刚度系数k:13 输入刚度系数k:14 输入刚度系数k:15 输入刚度系数k:16 输入刚度系数k:17 输入刚度系数k:18

第一单元机械振动1

第一单元机械振动 高考要求:1、理解简谐运动的概念,并能利用其特点分析力学问题; 2、理解单摆的摆动特点,会应用周期分工测量重力加速度; 3、理解简谐运动的振动图象; 4、知道什么是自由振动和受迫振动; 5、知道什么是共振及共振的条件;知道如何应用共振和防止共振; 6、知道振动中的能量转化关系。 知识要点: 一、机械振动 1、定义:物体(或物体的一部分)在某一中心位置(平衡位置)两侧所做的往复运动,叫 机械振动。 2、条件:物体受到回复力作用,阻尼足够小。 3、回复力:使振动物体返回平衡位置的力叫做回复力。是效果力。回复力可以是振动物体 所受的合外力——如弹簧振子的回复力。也可以是某个力的分力——如单摆振动中,回复力为重力在圆弧切线方向上的分力。 4、特点:往复性的变速运动。 二、简谐运动 1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用 下的振动,叫做简谐运动。 2、特点: 1)受力特征:F=-kx。x为偏离平衡位置的位移。 2)运动特征:加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。简谐运动

是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度 为零,加速度最大。在简谐运动中位移、速度、加速度、动量很有成效都随时间按 正弦(或余弦)规律作周期性变化,且各量的变化周期相同。 判断一个振动是否为简谐运动,依据就是看它是否满足上述受力特征或运动特征。 3)振动能量:对于两种典型的简谐运动——单摆和弹簧振子,其振动能量与振幅有关,振幅越大,能量越大。 3、描述简谐运动的物理量 1)位移x:由平衡位置指向振子所在处的有向线段。其最大值等于振幅。单位是m。 平衡位置:是指振动方向上合力为零的位置,不是泛指合力为零的位置。如单摆振动,是找不到合力为零的位置的在摆球以过最低点时,沿水平方向的合 力为零,这是单摆在该方向上振动的平衡位置,但在竖直方向有秘上的 向上的向心力,合力不为零。 2)振幅A:振动物体离开平衡位置的最大距离,它反应振动的强弱和振动的空间范围。 是标量。单位是m。 3)周期T:做简谐运动的物体完成一次全振动所需要的时间,单位是s。 4)频率f:单位时间内完成的全振动次数,单位是Hz, 周期和频率是反映振动快慢的物理量,与振幅无关,由振动系统本身的性质所决定,从而对应出固有周期或固有频率。 4、在简谐运动中各量的变化情况: 1)凡离开平衡位置的过程中,v、E k均减小,x、F、a、E P均增大;凡向玩意儿位置移动时,v、E k均增大,x、F、a、E P均减小。 2)在平衡位置时,x、F、a为零,E P最小,v、E k最大;当x=A时,F、a、E P最大,

(完整word版)机械振动和机械波知识点复习及练习

机械振动和机械波 一 机械振动知识要点 1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动 条件:a 、物体离开平衡位置后要受到回复力作用。b 、阻力足够小。 ? 回复力:效果力——在振动方向上的合力 ? 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) ? 描述振动的物理量 位移x (m )——均以平衡位置为起点指向末位置 振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程 频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动 ? 概念:回复力与位移大小成正比且方向相反的振动 ? 受力特征:kx F -= 运动性质为变加速运动 ? 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性 平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大 ? v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同 3. 简谐运动的图象(振动图象) ? 物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化 4. 简谐运动的表达式:)2sin( φπ +=t T A x 5. 单摆(理想模型)——在摆角很小时为简谐振动 ? 回复力:重力沿切线方向的分力 ? 周期公式:g l T π 2= (T 与A 、m 、θ无关——等时性) ? 测定重力加速度g,g=2 24T L π 等效摆长L=L 线+r 6. 阻尼振动、受迫振动、共振 阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。 特点:驱受f f = ? 共振:物体在受迫振动中,当驱动力的频率跟物体的固有频率相等的时候,受迫振动的振 幅最大,这种现象叫共振 ? 条件:固驱f f =(共振曲线) 【习题演练一】 1 一弹簧振子在一条直线上做简谐运动,第一次先后经过M 、N 两点时速度v (v ≠0)相同,那么,下列说法正确的是( ) A. 振子在M 、N 两点受回复力相同 B. 振子在M 、N 两点对平衡位置的位移相同 C. 振子在M 、N 两点加速度大小相等 D. 从M 点到N 点,振子先做匀加速运动,后做匀减速运动 2 如图所示,一质点在平衡位置O 点两侧做简谐运动,在它从平衡位置O 出发向最大位移A 处运动过程中经0.15s 第一次通过M 点,再经0.1s 第2次通过M 点。则此后还要经多长时间第3次通过M 点,该质点振动的频率为 3 甲、乙两弹簧振子,振动图象如图所示,则可知( ) A. 两弹簧振子完全相同 B. 两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

NO1机械振动答案

· Word 资料 《大学物理AII 》作业 No.01 机械振动 一、选择题: 1.假设一电梯室正在自由下落,电梯室天花板下悬一单摆(摆球质量为m ,摆长为l ) 。若使单摆摆球带正电荷,电梯室地板上均匀分布负电荷,那么摆球受到方向向下的恒定电场力F 。则此单摆在该电梯室作小角度摆动的周期为: [ C ] (A) Fm l π2 (B) Fl m π2 (C) F ml π 2 (D) ml F π 2 解: 2.图(a)、(b)、(c)为三个不同的简谐振动系统。组成各系统的各弹簧的原长、各弹簧的劲度系数及重物质量均相同。(a)、(b)、(c)三个振动系统的ω2(ω为固有角频率)值之比为 [ B ] (A) 2∶1∶ 2 1 (B) 1∶2∶4 (C) 2∶2∶1 (D) 1 ∶1∶2 解:由弹簧的串、并联特征有三个简谐振动系统的等效弹性系数分别为:2 k ,k ,k 2 则由m k = 2 ω可得三个振动系统的ω2(ω为固有角频率)值之比为: m k 2 :m k :m k 2,即1∶2∶4 3.两个同周期简谐振动曲线如图所示。则x [ A ] (A) 超前π/2 (C) 落后π 解:由振动曲线画出旋转矢量图可知 x 1的相位比x 2的相位超前π/2 4.一物体作简谐振动,振动方程为)2 1 cos(π+=t A x ω。则该物体在t = T /8(T 为振动周期)时刻的动能与t = 0时刻的动能之比为: (b) (c)

[ B ] (A) 1:4 (B) 1:2 (C) 1:1 (D) 2:1 (E) 4:1 解:由简谐振动系统的动能公式:)2 1(sin 2122πω+= t kA E k 有t = 0时刻的动能为:22221)2102(sin 21kA T kA =+?ππ t = T /8时刻的动能为:2224 1 )2182(sin 21kA T T kA =+?ππ, 则在t = T /8时刻的动能与t = 0时刻的动能之比为:1:2

机械振动与机械波 答案

衡水学院 理工科专业《大学物理B 》机械振动 机械波 习题解答 命题教师:杜晶晶 试题审核人:杜鹏 一、填空题(每空2分) 1、一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取坐标原点。若t =0时质点第一次通过x =-2cm 处且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为23 s 。 2、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。 (a )若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为cos(2//2)x A t T ππ=-。 (b )若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为cos(2//3)x A t T ππ=+。 3、频率为100Hz ,传播速度为300m/s 的平面简谐波,波线上两点振动的相位差为π/3,则此两点相距 0.5 m 。。 4、一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是 0.02m ,波长是 2.5m ,频率是 100 Hz 。 5、产生机械波的条件是有 波源 和 连续的介质 。 二、单项选择题(每小题2分) (C )1、一质点作简谐振动的周期是T ,当由平衡位置向x 轴正方向运动时,从1/2最大位移处运动到最大位移处的这段路程所需的时间 为( ) (A )T /12 (B )T /8 (C )T /6 (D ) T /4 ( B )2、两个同周期简谐振动曲线如图1所示,振动曲线1的相位比振动曲线2的相位( ) 图1 (A )落后2π (B )超前2 π (C )落后π (D )超前π ( C )3、机械波的表达式是0.05cos(60.06)y t x ππ=+,式中y 和x 的单位是m ,t 的单位是s ,则( ) (A )波长为5m (B )波速为10m ?s -1 (C )周期为13s (D )波沿x 正方向传播 ( D )4、如图2所示,两列波长为λ的相干波在p 点相遇。波在S 1点的振动初相是1?,点S 1到点p 的距离是r 1。波在S 2点的振动初相是2?,点S 2到点p 的距离是r 2。以k 代表零或正、负整数,则点p 是干涉极大的条件为( ) (A )21r r k π-= (B )212k ??π-= (C )()21212/2r r k ??πλπ-+-= 图2

机械振动大作业——简支梁的各情况分析

机械振动大作业 姓名:徐强 学号:SX1302106 专业:航空宇航推进理论与工程 能源与动力学院 2013年12月

简支梁的振动特性分析 题目:针对简支梁、分别用单、双、三、十个自由度以及连续体模型,计算其固有频率、固有振型。单、双、三自由度模型要求理论解;十自由度模型要求使用李兹法、霍尔茨法、矩阵迭代法、雅可比法、子空间迭代法求解基频;连续体要求推导理论解,并通过有限元软件进行数值计算。 解答: 一、 单自由度简支梁的振动特性 如图1,正方形截面(取5mm ×5mm )的简支梁,跨长为l =1m ,质量m 沿杆长均匀分布,将其简化为单自由度模型,忽略阻尼,则运动微分方程为0=+? ?kx x m ,固有频率ωn = eq eq m k ,其中k 为等效刚度, eq m 为等效质量。因此,求出上述两项即可知单自由度简支梁的固有 频率。 根据材料力学的结果,由于横向载荷F 作用在简支梁中间位置而 引起的变形为)(2 24348EI F -)(x l x x y -=(2 0l x ≤≤), 48EI F -3max l y =为最大挠 度,则: eq k =δF = 348EI l 梁本身的最大动能为: )(224348EI F - )(x l x x y -==)(223 max 43x l l x y - T max =2×dx x y l m l 2 20)(21? ?? ?????=2max 351721?y m ) (

如果用eq m 表示简支梁的质量等效到中间位置时的大小,它的最大动能可表示为: T max =2max 21 ?y m eq 所以质量为m 的简支梁,等效到中间位置的全部质量为: m m eq 35 17= 故单自由度简支梁横向振动的固有频率为: ωn = eq eq m k = 3 171680ml EI m k 图1 简支梁的单自由度模型 二、 双自由度简支梁的振动特性 如图2,将简支梁简化为双自由度模型,仍假设在简支梁中间位置作用载荷,根据对称性,等效质量相等,因此只要求出在3/l 处的等效质量即可。在6/l 至2/l 之间积分,利用最大动能进行质量等效,略去小量得: m m eq 258≈ 所以,质量矩阵为: ??????=→ 1001258m m 双自由度简支梁的柔度矩阵:

机械振动和机械波知识点总结教学教材

机械振动和机械波 一、知识结构 二、重点知识回顾 1机械振动 (一)机械振动 物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。 产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。b、阻力足够小。 (二)简谐振动 1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。简谐振动是最简单,最基本的振动。研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。 2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。 3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。 (三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。 2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。振动的周期T跟频率f之间是倒数关系,即T=1/f。振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。 (四)单摆:摆角小于5°的单摆是典型的简谐振动。 细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。单摆做简谐振动的条件是:最大摆角小于5°,单摆的回复力F是重力在 圆弧切线方向的分力。单摆的周期公式是T=。由公式可知单摆做简谐振动的固有周期与振幅,摆球质量无关,只与L和g有关,其中L是摆长,是悬点到摆球球心的距离。g是单摆所在处的重力加速度,在有加速度的系统中(如悬挂在升降机中的单摆)其g应为等效加速度。 (五)振动图象。 简谐振动的图象是振子振动的位移随时间变化的函数图象。所建坐标系中横轴表示时间,纵轴表示位移。图象是正弦或余弦函数图象,它直观地反映出简谐振动的位移随时间作周期性变化的规律。要把质点的振动过程和振动图象联系起来,从图象可以得到振子在不同时刻或不同位置时位移、速度、加速度,回复力等的变化情况。 (六)机械振动的应用——受迫振动和共振现象的分析 (1)物体在周期性的外力(策动力)作用下的振动叫做受迫振动,受迫振动的频率在振动稳定后总是等于外界策动力的频率,与物体的固有频率无关。 (2)在受迫振动中,策动力的频率与物体的固有频率相等时,振幅最大,这种现象叫共振,声音的共振现象叫做共鸣。 2机械波中的应用问题 1. 理解机械波的形成及其概念。 (1)机械波产生的必要条件是:<1>有振动的波源;<2>有传播振动的媒质。 (2)机械波的特点:后一质点重复前一质点的运动,各质点的周期、频率及起振方向都与波源相同。 (3)机械波运动的特点:机械波是一种运动形式的传播,振动的能量被传递,但参与振动的质点仍在原平衡位置附近振动并没有随波迁移。 (4)描述机械波的物理量关系:v T f ==? λ λ 注:各质点的振动与波源相同,波的频率和周期就是振源的频率和周期,与传播波的介质无关,波速取决于质点被带动的“难易”,由媒质的性质决定。 2. 会用图像法分析机械振动和机械波。 振动图像,例:波的图像,例: 振动图像与波的图像的区别横坐标表示质点的振动时间横坐标表示介质中各质点的平衡位置 表征单个质点振动的位移随时间变 化的规律 表征大量质点在同一时刻相对于平衡位 置的位移 相邻的两个振动状态始终相同的质 点间的距离表示振动质点的振动周 期。例:T s =4 相邻的两个振动始终同向的质点间的距 离表示波长。例:λ=8m

《机械振动》单元测试题(含答案)

《机械振动》单元测试题(含答案) 一、机械振动选择题 1.甲、乙两弹簧振子,振动图象如图所示,则可知() A.甲的速度为零时,乙的速度最大 B.甲的加速度最小时,乙的速度最小 C.任一时刻两个振子受到的回复力都不相同 D.两个振子的振动频率之比f甲:f乙=1:2 E.两个振子的振幅之比为A甲:A乙=2:1 2.如图所示,甲、乙两物块在两根相同的弹簧和一根张紧的细线作用下静止在光滑水平面上,已知甲的质量小于乙的质量.当细线突然断开斤两物块都开始做简谐运动,在运动过程中() A.甲的最大速度大于乙的最大速度 B.甲的最大速度小于乙的最大速度 C.甲的振幅大于乙的振幅 D.甲的振幅小于乙的振幅 3.甲、乙两单摆的振动图像如图所示,由图像可知 A.甲、乙两单摆的周期之比是3:2 B.甲、乙两单摆的摆长之比是2:3 C.t b时刻甲、乙两摆球的速度相同D.t a时刻甲、乙两单摆的摆角不等 4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l,引力常量为G,地球质量为M,摆球到地心的距离为r,则单摆振动周期T与距离r的关系式为() A.T=2GM l B.T=2 l GM

C .T = 2πGM r l D .T =2πl r GM 5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。物体带动纸带一起向左运动时,让单摆小幅度前后摆动,于是在纸带上留下如图所示的径迹。图乙为某次实验中获得的纸带的俯视图,径迹与中央虚线的交点分别为A 、B 、C 、D ,用刻度尺测出A 、B 间的距离为x 1;C 、D 间的距离为x 2。已知单摆的摆长为L ,重力加速度为g ,则此次实验中测得的物体的加速度为( ) A . 212 ()x x g L π- B . 212 ()2x x g L π- C . 212 ()4x x g L π- D . 212 ()8x x g L π- 6.如图所示,将小球甲、乙、丙(都可视为质点)分别从A 、B 、C 三点由静止同时释放,最后都到达竖直面内圆弧的最低点D ,其中甲是从圆心A 出发做自由落体运动,乙沿弦轨道从一端B 到达最低点D ,丙沿圆弧轨道从C 点运动到D ,且C 点很靠近D 点,如果忽略一切摩擦阻力,那么下列判断正确的是( ) A .丙球最先到达D 点,乙球最后到达D 点 B .甲球最先到达D 点,乙球最后到达D 点 C .甲球最先到达 D 点,丙球最后到达D 点 D .甲球最先到达D 点,无法判断哪个球最后到达D 点 7.如图1所示,轻弹簧上端固定,下端悬吊一个钢球,把钢球从平衡位置向下拉下一段距离A ,由静止释放。以钢球的平衡位置为坐标原点,竖直向上为正方向建立x 轴,当钢球在振动过程中某一次经过平衡位置时开始计时,钢球运动的位移—时间图像如图2所示。已知钢球振动过程中弹簧始终处于拉伸状态,则( ) A .1t 时刻钢球处于超重状态

机械振动的概念 (1)

第一章绪论 1-1 机械振动的概念 振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。 振动在大多数情况下是有害的。由于振动,影响了仪器设备的工作性能;降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。此外,由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程,如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。这些都在生产实践中为改善劳动条件、提高劳动生产率等方面发挥了积极作用。研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防止与限制其危害,同时发挥其有益作用。 任何机器或结构物,由于具有弹性与质量,都可能发生振动。研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。实际的振系往往是复杂的,影响振动的因素较多。为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。其中质量(包括转动惯量)只具有惯性;弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧;在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。例如将质量较大、弹性较小的构件简化为不计弹性的集中质量;将振动过程中产生较大弹性变形而质量较小的构件,简化为不计质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。这样就把分布参数的连续系统简化为集中参数的离散系统。 例如图1-1(a)所示的安装在混凝土基 础上的机器,为了隔振的目的,在基础下面一 般还有弹性衬垫,如果仅研究这一系统在铅垂 方向的振动,在振动过程中弹性衬垫起着弹簧 作用,机器与基础可看作一个刚体,起着质量 的作用,衬垫本身的内摩擦以及基础与周围约 束之间的摩擦起着阻尼的作用(阻尼用阻尼器 表示,阻尼器由一个油缸和活塞、油液组成。 活塞上下运动时,油液从间隙中挤过,从而造 成一定的阻尼)。这样图1-1(a)所示的系统 可简化为1-1(b)所示的力学模型。又如图1-2中假想线表示的是一辆汽车,若研究的问题是汽车沿道路行驶时车体的上下运动与俯仰运动,则可简化为图中实线所示的刚性杆的平面运动这样一个力学模型。其中弹簧代表轮胎及其悬挂系统的弹性,车体的惯性简化为平移质量及绕质心的转动惯量,轮胎及其悬挂系统的内摩擦以及地面的摩擦等起着阻尼作用,用阻尼器表示。

机械振动与机械波相结合的综合应用(教案)

机械振动与机械波相结合的综合应用 【教学目标】 1、通过对比简谐运动与简谐波,掌握简谐运动与简谐波的特征及描述方法。 2、知道简谐运动与简谐波相结合的综合题的题型,掌握解决此类问题的基本方法。【教学过程】 一、核心知识 1、研究对象:简谐运动、简谐波 2、简谐运动与简谐波的对比 学生活动:学生先讨论课前独立填写的学案中的下表中红色内容(2分钟),然后 学生活动:①学生先小组讨论学案上按要求完成的内容(每一类问题2分钟),然后展示要难点问题,提请全班讨论解决。②第三类题型讨论完后,总结合归纳解题基本方法。 老师活动:①老师对重点突破共同难点问题,突破方法是通过提前预设的PPT进行分析。②对学生归纳的解题方法进行提炼和深化。③强调解题规范。 1、已知波的传播和波上质点振动的部分信息,分析问题 【例1】(2016年全国Ⅲ卷,34(1))(5分)由波源S形成的简谐横波在均匀介质中向左、右传播。波源振动的频率为20 Hz,波速为16 m/s。已知介质中P、Q两质点位于波源S的两侧,且P、Q和S的平衡位置在一条直线上,P、Q的平衡位置到S的平衡位置之间的距离分别为m、m,P、Q开始震动后,下列判断

正确的是_____。(填正确答案标号。选对1个得2分,选对2个得4分,选对3个得5分。每选错1个扣3分,最低得分为0分) A .P 、Q 两质点运动的方向始终相同 B .P 、Q 两质点运动的方向始终相反 C .当S 恰好通过平衡位置时,P 、Q 两点也正好通过平衡位置 、 D .当S 恰好通过平衡位置向上运动时,P 在波峰 E .当S 恰好通过平衡位置向下运动时,Q 在波峰 【答案】BDE 【考点】波的图像,波长、频率和波速的关系 【解析】根据题意信息可得1s 0.05s 20 T ==,16m/s v =,故波长为0.8m vT λ==,找P 点关于S 点的对称点P ',根据对称性可知P '和P 的振动情况完全相同,P '、 Q 两点相距15.814.630.80.82x λλ???=-= ??? ,为半波长的整数倍,所以两点为反相点,故P '、Q 两点振动方向始终相反,即P 、Q 两点振动方向始终相反,A 错误B 正确; P 点距离S 点3194 x λ=,当S 恰好通过平衡位置向上振动时,P 点在波峰,同理Q 点距离S 点1184 x λ'=,当S 恰好通过平衡位置向下振动时,Q 点在波峰,DE 正确。 巩固练习:(2016年全国Ⅱ卷,34(2)))(10分)一列简谐横波在介质中沿x 轴正向传播,波长不小于10cm .O 和A 是介质中平衡位置分别位于x =0和x=5cm 处的两个质点.t=0时开始观测,此时质点O 的位移为y =4cm ,质点A 处于波峰位置;1 s 3 t =时,质点O 第一次回到平衡位置,t=1s 时,质点A 第一次回到平衡位置.求: (ⅰ)简谐波的周期、波速和波长;(ⅱ)质点O 的位移随时间变化的关系式. 【答案】(i )T =4s ,v =s ,λ=30cm (ii )50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 【解析】(i )t =0s 时,A 处质点位于波峰位置 t =1s 时,A 处质点第一次回到平衡位置可知 1s 4 T =,T =4s … 1s 3 t =时,O 第一次到平衡位置,t =1s 时,A 第一次到平衡位置 可知波从O 传到A 用时2s 3 ,传播距离x =5cm 故波速7.5cm /s x v t ==,波长λ=vT =30cm (ⅱ)设0sin(t )y A ω?=+,可知2rad/s 2T ππω== 又由t =0s 时,y =4cm ;1s 3t =,y =0,代入得A =8cm ,再结合题意得056 ?π= 故50.08sin(t )26y ππ=+或者10.08cos(t )23 y ππ=+ 2、已知两个时刻的波形图和部分信息,分析问题

第1章 机械运动

科学之旅 教学目标 知识技能 1.初步了解一些物理现象 2.对教师讲解的内容有所理解 过程与方法 通过讲解和实验,让学生初步了解学习物理知识和研究物理问题的方法。 情感、态度和价值观: 1.在教学中渗透人文主义教育 2.通过实验教学,激发学生的学习兴趣 教学重点 激发学生学习兴趣,了解学习物理知识和研究物理问题的方法。 教学方法 演示法、讨论法。 课时安排 1课时 教学过程 一、引入新课 同学们,今天我们开始学习一门新的学科—物理,你听别人说过物理吗?你心中的物理是怎样的呢?谁起来说一下?(让学生起来说说自己的看法) 二、新课教学 1. 演示几个实验,说明物理是十分有趣的。 (让学生先猜测现象,再演示) (1)器材:一大一小两只试管(尺寸十分接近),水,红墨水。 做法:大试管装入过半的水,管口朝上,放入小试管,倒过来,水流下,管上升。 现象:试管自动上升。 (2)器材:漏斗,乒乓球。 做法:一个乒乓球放在一个倒扣的漏斗中,通过漏斗嘴用力吹下面的乒乓球。 现象:乒乓球悬在空中不下落。 拓展:让学生撕下两张纸,用力吹两张纸的中央,发现纸靠近。 (3)器材:两只大烧杯,鸡蛋,清水,盐水。 做法:把一只鸡蛋分别放入两个大烧杯中。 现象:鸡蛋有浮有沉。 (4)器材:导线,开关,电池组,小灯泡,变阻器。 做法:连好电路,闭和开关,移动滑片,观察小灯泡的发光情况。 现象:灯变亮。 2. 物理不仅有趣,而且是十分有用的,它能帮助我们解释生活中的许多现象。 (让学生先说说自己的看法,教师再解析) 提问1:人听到子弹声再躲来的及吗?为什么? 解析:子弹出膛飞行时的速度比声音快,所以来不及。 提问2:我们对着水中看到的鱼用手去抓,能抓到吗? 解析:抓不到,我们看到的是像,真正的鱼在像的下边。 提问3:黄浦江边的路灯,水中的像为什么是一道光柱? 解析:古诗云“月黑见渔灯,孤光一点荧。微微风簇浪,散做满河星”,起伏的水面相当于许多平面镜,每盏灯在水里有好多像,连在一起就成了一道光柱。

机械振动和机械波·机械波·教案

机械振动和机械波·机械波·教案 一、教学目标 1.在物理知识方面的要求: (1)明确机械波的产生条件; (2)掌握机械波的形成过程及波动传播过程的特征; (3)了解机械波的种类极其传播特征; (4)掌握描述机械波的物理量(包括波长、频率、波速)。 2.要重视观察演示实验,对波的产生条件及形成过程有全面的理解,同时要求学生仔细分析课本的插图。 3.在教学过程中教与学双方要重视引导和自觉培养正确的思想方法。 二、重点、难点分析 1.重点是机械波的形成过程及描述; 2.难点是机械波的形成过程及描述。 三、教具 1.演示绳波的形成的长绳; 2.横波、纵波演示仪; 3.描述波的形成过程的挂图。 四、主要教学过程 (一)引入新课

我们学习过的机械振动是描述单个质点的运动形式,这一节课我们来学习由大量质点构成的弹性媒质的整体的一种运动形式——机械波。 (二)教学过程设计 1.机械波的产生条件 例子——水波:向平静的水面投一小石子或用小树枝不断地点水,会看到水面上一圈圈起伏不平的波纹逐渐向四周传播出去,形成水波。 演示——绳波:用手握住绳子的一端上下抖动,就会看到凸凹相间的波向绳的另一端传播出去,形成绳波。 以上两种波都可以叫做机械波。 (1)机械波的概念:机械振动在介质中的传播就形成机械波 (2)机械波的产生条件:振源和介质。 振源——产生机械振动的物质,如在绳波中的手的不停抖动就是振源。 介质——传播振动的媒质,如绳子、水。 2.机械波的形成过程 (1)介质模型:把介质看成由无数个质点弹性连接而成,可以想象为(图1所示) (2)机械波的形成过程: 由于相邻质点的力的作用,当介质中某一质点发生振动时,就会带动周围的质点振动起来,从而使振动向远处传播。例如:

机械振动大作业-求初始激励的自由振动响应

图示系统中, m1=m2=m3=m, k1=k2=k3=k, 设初始位移为1, 初始速度为0, 求初始激励的自由振动响应。 要求: (1)利用影响系数法求解刚度阵K和质量阵M,建立控制方程;(15分) (2)求解系统固有频率和基准化振型;(13分) (3)求解对初始激励的响应(运动方程);(12分) (4)利用软件仿真对初始激励响应曲线(Matlab,simulink,excel均可),给出仿真程序(或框图)、分析结果;尝试对m、k赋值,分析曲线变化; (10分) (5)浅谈对本课程的理解、体会,对授课的意见、建议;(10分) 字迹清晰,书写规整。(10分)

(1)利用影响系数法求解刚度阵K 和质量阵M ,建立控制方程; ①求解刚度矩阵K 令[]T 00 1 =X ,则弹簧变形量δ=[1 1 0]T , 在此条件下系统保持平衡,按定义需加于三物块的力312111、、k k k 如图所示 根据平衡条件可得 0,,2312222121221111=-=-=-==+=+=k k k k k k k k k k k δδδ 同理,令[]T 010=X 得 k k k k k k k k k k -=-==+=-=-=3323222212,2, 令[]T 100=X 得 k k k k k k k ===-==33332313,-,0 故刚度矩阵为 ②求解质量矩阵M 令[ ]T 001=X 得m m m ==111,021=m ,031=m 令[]T 010=X 得012=m ,m m m ==222,032=m 令[]T 100=X 得013=m ,023=m ,m m m ==333 故质量矩阵为

2021教科版高中物理选修第一章《机械振动》word学案

2021教科版高中物理选修第一章《机械振动》word 学案 一、简谐运动的图像及应用 由简谐运动的图像能够获得的信息: (1)确定振动质点在任一时刻的位移;(2)确定振动的振幅;(3)确定振动的周期和频率;(4)确定各时刻质点的振动方向;(5)比较各时刻质点加速度的大小和方向. 例1一质点做简谐运动的位移x与时刻t的关系如图1所示,由图可知( ) 图1

A.频率是2 Hz B.振幅是5 cm C.t=1.7 s时的加速度为正,速度为负 D.t=0.5 s时质点所受的合外力为零 E.图中a、b两点速度大小相等、方向相反 F.图中a、b两点的加速度大小相等,方向相反 二、简谐运动的周期性和对称性 1.周期性:做简谐运动的物体在完成一次全振动后,再次振动时则是重复上一个全振动的形式,因此做简谐运动的物体通过同一位置能够对应不同的时刻,做简谐运动的物体具有周期性. 2.对称性 (1)速率的对称性:系统在关于平稳位置对称的两位置具有相等的速率. (2)加速度和回复力的对称性:系统在关于平稳位置对称的两位置具有等大反向的加速度和回复力. (3)时刻的对称性:系统通过关于平稳位置对称的两段位移的时刻相等.振动过程中通过任意两点A、B的时刻与逆向通过的时刻相等. 例2物体做简谐运动,通过A点时的速度为v,通过1 s后物体第一次以相同速度v通过B点,再通过1 s物体紧接着又通过B点,已知物体在2 s内所走过的总路程为12 cm,则该简谐运动的周期和振幅分别是多大? 三、单摆周期公式的应用 1.单摆的周期公式T=2πl g .该公式提供了一种测定重力加速度的方法. 2.注意:(1)单摆的周期T只与摆长l及g有关,而与振子的质量及振幅无关. (2)l为等效摆长,表示从悬点到摆球球心的距离,要区分摆长和摆线长.小球在光滑圆周上小角度振动和双线摆也属于单摆,“l”实际为摆球到摆动所在圆弧的圆心的距离.(3)g为当地的重力加速度或“等效重力加速度”. 例3有两个同学利用假期分别去参观北京大学和南京大学的物理实验室,并各悠闲那儿利用先进的DIS系统较准确地探究了“单摆的周期T与摆长l的关系”,他们通过校园网交换实验数据,并由运算机绘制了T2—l图像,如图2甲所示,去北大的同学所测实验结果对应的图线是________(填“A”或“B”).另外,在南大做探究的同学还利用运算机绘制了两种单摆的振动图像(如图乙),由图可知,两单摆摆长之比l a∶l b=________.

2018年机械振动和机械波专题复习

知识点一:振动图像(物理意义、质点振动方向)与波形图(物理意义、传播方向与振动方向),回复力、位移、速度、加速度等分析 1.悬挂在竖直方向上的弹簧振子,周期为2 s,从最低点的位置向上运动时开始计时,它的振动图像如图所示,由图 可知?( ) A.t=1.25 s 时振子的加速度为正,速度为正 B.t=1.7 s 时振子的加速度为负,速度为负 C.t=1.0 s 时振子的速度为零,加速度为负的最大值 D.t=1.5 s 时振子的速度为零,加速度为负的最大值 2.如图甲所示,一弹簧振子在A 、B 间做简谐运动,O 为平衡位置,如图乙是振子做简谐运动时的位移-时间图像,则 关于振子的加速度随时间的变化规律,下列四个图像(选项)中正确的是?( ) 3.如图甲所示,水平的光滑杆上有一弹簧振子,振子以O 点为平衡位置,在a 、 b 两点之间做简谐运动,其振动图象如图乙所示。由振动图象可以得知 A .振子的振动周期等于t 1 B .在t =0时刻,振子的位置在a 点 C .在t =t 1时刻,振子的速度为零 D .从t 1到t 2,振子正从O 点向b 点运动 4.一简谐机械波沿x 轴正方向传播,周期为T ,波长为λ。若在 振动图像如右图所示,则该波在t=T /2时刻的波形曲线为( 5.一列横波沿x 轴正向传播,a 、b 、c 、d 为介质中沿波传播方向上四个质点的平衡位置。某时刻的波形如图1 所示,此后,若经过3/4周期开始计时,则图2描述的是 A.a 处质点的振动图象 B.b 处质点的振动图象 C.c 处质点的振动图象 D.d 处质点的振动图象 A y

6.如图所示,甲图为一列简谐横波在t=0.2s 时刻的波动图象,乙图为这列波上质点P 的振动图象,则该波 A .沿x 轴负方传播,波速为0.8m/s B .沿x 轴正方传播,波速为0.8m/s C .沿x 轴负方传播,波速为5m/s D .沿x 轴正方传播,波速为5m/s 7.如图所示是一列沿x 轴传播的简谐横波在某时刻的波形图。已知a 质点的运动状态总是滞后于b 质点0.5s ,质点b 和质点c 之间的距离是5cm 。下列说法中正确的是 A .此列波沿x 轴正方向传播 B .此列波的频率为2Hz C .此列波的波长为10cm D .此列波的传播速度为5cm/s 8.一列向右传播的简谐横波在某一时刻的波形如图所示,该时刻,两个质量相同的质点P 、Q 到平衡位置的距离相等。关于P 、Q 两个质点,以下说法正确的是( ) A .P 较Q 先回到平衡位置 B .再经 4 1 周期,两个质点到平衡位置的距离相等 C .两个质点在任意时刻的动量相同 D .两个质点在任意时刻的加速度相同 9.在介质中有一沿水平方向传播的简谐横波。一质点由平衡位置竖直向上运动,经0.1 s 到达最大位移处.在 这段时间内波传播了0.5 m 。则这列波( ) A .周期是0.2 s B .波长是0.5 m C .波速是2 m/s D .经1.6 s 传播了8 m 10.如图所示,两列简谐横波分别沿x 轴正方向和负方向传播,两波源分别位于x=-0.2m 和x=1.2m 处,两列波的速度大小均为v=0.4m/s ,两波源的振幅均为A=2cm 。图示为t=0时刻两列波的图象(传播方向如图所示),该时刻平衡位置位于x=0.2m 和x=0.8m 的P 、Q 两质点刚开始振动,质点M 的平衡位置处于x=0.5m 处。关于各质点运动情况的判断正确的是( ) A. t=0时刻质点P 、Q 均沿y 轴正方向运动 B. t=1s 时刻,质点M 的位移为-4cm C. t=1s 时刻,质点M 的位移为+4cm D. t=0.75s 时刻,质点P 、Q 都运动到x=0.5m x /10-1 m y /cm -2 2 4 6 8 10 12 v 2 -2 v P Q M /m t /s

相关主题