当前位置:文档之家› 欧拉公式信号与系统

欧拉公式信号与系统

欧拉公式信号与系统

欧拉公式信号与系统

808 材料力学与结构力学 考试范围

808 材料力学与结构力学1. 《材料力学》宋子康、蔡文安编,同济大学出版社,2001年6月(第二版)2.《结构力学教程》(Ⅰ、Ⅱ部分),龙驭球、包世华主编,高等教育出版社,2000~2001年3.《结构力学》(上、下册),朱慈勉主编,高等教育出版社,2004年 一、考试范围 I、材料力学必选题(约占50%) 1. 基本概念:变形固体的物性假设,约束、内力、应力,杆件变形的四个基本形式等。 2. 轴向拉、压问题:内力和应力(横截面及斜截面上)的计算,轴向拉伸与压缩时的变形计算,材料的力学性质,塑性材料与脆性材料力学性能的比较,简单超静定桁架,圆筒形薄壁容器等。 3. 应力状态分析:平面问题任意点的应力状态描述,平面问题任意点任一方向应力的求解(包括数解法、图解法),一点的应力状态识别,空间应力分析及一点的大应力,广义虎克定律等。 4. 扭转问题:自由扭转的变形特征,自由扭转杆件的内力计算,扭转变形计算,矩形截面杆的自由扭转,薄壁杆件的自由扭转,简单超静定受扭杆件分析等。 5. 梁的内力、应力、变形:内力(剪力、弯矩)的计算及其内力图的绘制,叠加法作弯矩图的合理运用,梁的正应力和剪应力的计算及其强度条件,梁内一点的应力状态识别,主应力轨迹,平面弯曲的充要条件,梁的变形(挠度、转角)计算,叠加法求梁的变形,梁的刚度校核,简单超静定梁分析等。 6. 强度理论与组合变形:四个常用的强度理论,斜弯曲,拉伸(压缩)与弯曲的组合,扭转与拉压以及扭转与弯曲的组合,拉压及扭转与弯曲的组合,偏心拉、压问题,强度校核等。

II、结构力学必选题(约占40%) 1. 平面体系的几何组成分析及其应用 2. 静定结构受力分析与特性 3. 影响线及其应用 4. 位移计算 5. 超静定结构受力分析与特性(力法、位移法、概念分析等) 6. 结构动力分析(运动方程、频率、振型、阻尼、自由振动、强迫振动、振型分解法等)III、可选题(约占10%,一道材料力学可选题和一道结构力学可选题中必选做一题) 1. 材料力学可选题:能量法:变形能的计算,卡氏第一、第二定理,运用卡氏第二定理解超静定问题等;压杆稳定:细长压杆临界力的计算,欧拉公式的适用范围,压杆稳定的实用计算,简单结构体系的稳定性分析等。 2. 结构力学可选题:变形体的虚功原理;力矩分配法;结构矩阵分析(单元刚度阵、总刚度阵的集成、支座条件的引入和非结点荷载的处理等)。 二、题型 1. 以计算分析题型为主,含基本概念分析、综合概念分析和结构定性分析。 2. 含材料力学-结构力学综合题。

信号与系统重点概念公式总结

信号与系统重点概念公式 总结 Last updated on the afternoon of January 3, 2021

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jba 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为 复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11 ==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121 **==?≠=??? 其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

欧拉公式的应用

欧拉公式的应用 绪论 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

目录 绪论......................................错误!未定义书签。目录......................................错误!未定义书签。 一、绪论 (1) 二、欧拉公式的证明、特点、作用 (1) 三、欧拉公式在三角函数中的应用 (4) (一) 倍角和半角的三角变换 (4) (二) 积化和差与差化积的三角变换 (4) (三) 求三角表达式的值 (5) (四) 证明三角恒等式 (6) (五) 解三角方程 (7) (六) 利用公式求三角级数的和 (7) (七) 探求一些复杂的三角关系式 (8) (八) 解决一些方程根的问题 (9) (九) 欧拉公式大降幂 (10) 结束语 (15)

一、绪论 欧拉公式形式众多,有多面体欧拉公式、欧拉求和公式、cos sin i e i θθθ=+、欧拉积分等多种形式、立体几何、工程方面等方面.由于欧拉公式有多种形式,在数学领域中的应用范围很广,本文只介绍欧拉公式的一种形式“cos sin i e i θθθ=+”以及这种形式在数学中的应用. 二 、欧拉公式的证明、特点、作用 1748年,欧拉在其著作中陈述出公式cos sin i e i θθθ=+,欧拉公式在数学的许多定理的证明和计算中,有着广泛的应用.它将定义和形式完全不同的指数函数和三角函数联系起来,为我们研究这两种函数的有关运算及其性质架起了一座桥梁.同时我们知道三角函数的恒等变换是中学数学中的一个重要内容,也是一个难点,但由于三角恒等变换所用公式众多,这便给解决三角变换问题带来了诸多不便.下面将通过欧拉公式,将三角函数化为复指数函数,从而将三角变换化为指数函数的代数运算,从而使得问题简单化,并给出了欧拉公式在其它几个方面的应用,在高等数学中的部分应用. 欧拉公式cos sin i e i θθθ =+它的证明有各种不同的证明方法,好多《复变 函数》教科书上,是以复幂级数为工具,定义复变指数函数和复变三角函数来进行证明的.下面我们介绍一种新的证明方法:极限法. 证明 令()1n f z i n θ?? =+ ??? (),R n N θ∈∈. 首先证明 ()lim cos sin n f z i θθ→∞ =+. 因为 arg 1n i narctg n n θθ?? ?? += ? ????? , 所以 2 2 211cos sin n n i i narctg i narctg n n n n θθθθ????????? ?+=++ ? ? ? ???????? ?????. 从而2 2 2lim 1lim 1cos sin n n n n i narctg i narctg n n n n θθθθ→∞→∞????????? ?+=++ ? ? ? ???????? ?????.

欧拉公式推导

欧拉公式推导: 图4.3所示的两端铰支杆件,受轴向压力N 作用而处于中性平衡微弯状态,杆件弯曲后截面中产生了弯矩M 和剪力V ,在轴线任意点上由弯矩产生的横向变形为1y ,由剪力产生的横向变形为2y ,总变形21y y y +=。 y 图4.3 两端铰支的轴心压杆临界状态 设杆件发生弯曲屈曲时截面的临界应力小于材料比例极限p f ,即p f ≤σ(对理想材料取y p f f =)。由材料力学可得: EI M dz y d -=2 12 由剪力V 产生的轴线转角为: dz dM GA V GA dz dy ?=?==ββγ2 式中 A 、I ——杆件截面面积、惯性矩; E 、G ——材料的弹性模量、剪切模量; β—— 与截面形状有关的系数。 因为 222 22dz M d GA dz y d ?=β 所以 2222122222d y d y d y M d M dz dz dz EI GA dz β=+=-+? 由 y N M ?=得: 2222dz y d GA N y EI N dz y d ?+?-=β

01=?+??? ??-''y EI N GA N y β 令 ??? ??-=GA N EI N k β12 得常系数线性二阶齐次方程 20y k y ''+= 其通解为:sin cos y A kz B kz =+ 由边界条件:;0,0==y z 0=B ,kz A y sin =。再由0,==y l z 得: 0sin =kl A 上式成立的条件是0=A 或0sin =kl ,其中0=A 表示杆件不出现任何变形,与杆件微弯的假设不符。由0sin =kl ,得πn kl =(=n 1,2,3…),取最小值=n 1,得π=kl ,即 2 221N k N l EI GA πβ==??- ??? 由此式解出N ,即为中性平衡的临界力cr N 12222222211Ι11γππβππ?+?=?+?=l ΕΙl ΕGA l ΕΙl ΕΙ N cr (4.6) 临界状态时杆件截面的平均应力称为临界应力cr σ 12 22211γλπλπσ?+?==ΕΑΕA N cr cr (4.7) 式中 1γ——单位剪力时杆件的轴线转角,)/(1GA βγ=; l ——两端铰支杆得长度; λ——杆件的长细比,i l /=λ; i ——杆件截面对应于屈曲轴的回转半径,A I i /=。 如果忽略杆件剪切变形的影响(此影响很小)则式(4.6)、(4.7)变为: 22cr E πσλ = (4.8)

欧拉公式的证明和应用

数学文化课程报告 欧拉公式的证明与应用 一.序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 极限法 --------------------------------------3 指数函数定义法-------------------------------4 分离变量积分法-------------------------------4 复数幂级数展开法-----------------------------4 变上限积分法---------------------------------5 类比求导法-----------------------------------7 三.欧拉公式的应用 求高阶导数-----------------------------------7 积分计算------------------------------------8 高阶线性齐次微分方程的通解------------------9 求函数级数展开式----------------------------9 三角级数求和函数----------------------------10 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言

欧拉公式的证明(整理)Word版

欧拉公式的证明 著名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+....., siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有: a^(it)=ρ(cosθ+isinθ) 1 因共轭解适合方程,用-i替换i有: a^(-it)=ρ(cosθ-isinθ) 2

欧拉公式的应用

滨州学院 毕业设计(论文) 题目欧拉公式的应用 系(院)数学与信息科学系 专业数学与应用数学 班级 2004级本科四班 学生姓名杨明证 学号 2004040635 指导教师徐化忠 职称讲师 2008年04月18日

欧拉公式的应用 摘要 本文首先介绍了一下欧拉公式以及推广的欧拉公式,对欧拉公式的特点作了简要的探讨.欧拉公式形式众多,在数学领域内的应用范围很广,本文对欧拉公式在三角函数中的应用作了详细的研究,欧拉公式在求三角级数中的应用中、在证明三角恒等式时、解三角方程的问题时、探求一些复杂的三角关系时,可以避免复杂的三角变换,利用较直观的代数运算使得问题得到解决.另一方面,利用欧拉公式大降幂,能够把高次幂的正余弦函数表示为一次幂函数的代数和,克服了高次幂函数在运算上的不方便. 关键词:欧拉公式三角函数降幂级数三角级数

Euler's Formula for the Application Abstract This text first introduced the Euler's formula and the generalized Euler's formula, and then briefly discussed the characteristics of the Euler's formula. The form of the Euler's formula is numerous ,and the application of the Euler's formula is extensive, this text researches the Euler's formula in the Triangle Function in detail, the Euler's formula in the application of the trigonometric series、the demonstration of the trigonometric identity, the solution of the problems of the trigonometry、the search of the complicated triangle ,the complex triangular transformation can be avoided , the problems can be resolved with more visualized algebraic operation . On the other hand, the use of the decreasing powers of the Euler's formula can express the sine function and the cosine function of higher-power as the algebraic addition of the function of the first power, To overcome the inconvenience of the high-power function in computation. Key words: Euler's formula trigonometric function series of decreasing powers triangular numbers

材料力学公式大全

材料力学常用公式 1.外力偶矩计算公式(P功率,n转速) 2.弯矩、剪力和荷载集度之间的关系式 3.轴向拉压杆横截面上正应力的计算公式(杆件横截面 轴力F N,横截面面积A,拉应力为正) 4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x 轴正方向逆时针转至外法线的方位角为正) 5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1; 拉伸前试样直径d,拉伸后试样直径d1) 6.纵向线应变和横向线应变 7.泊松比 8.胡克定律 9.受多个力作用的杆件纵向变形计算公式?

10.承受轴向分布力或变截面的杆件,纵向变形计算公式 11.轴向拉压杆的强度计算公式 12.许用应力,脆性材料,塑性材料 13.延伸率 14.截面收缩率 15.剪切胡克定律(切变模量G,切应变g ) 16.拉压弹性模量E、泊松比和切变模量G之间关系式 17.圆截面对圆心的极惯性矩(a)实心圆 (b)空心圆 18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点 到圆心距离r) 19.圆截面周边各点处最大切应力计算公式

20.扭转截面系数,(a)实心圆 (b)空心圆 21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转 切应力计算公式 22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式 23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如 阶梯轴)时或 24.等直圆轴强度条件 25.塑性材料;脆性材料 26.扭转圆轴的刚度条件? 或 27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式 , 28.平面应力状态下斜截面应力的一般公式 ,

信号与系统知识点

第1章 信号与系统分析导论 北京交通大学 1、 信号的描述及分类 周期信号: ()000002sin ,sin ,2t T m k N π ωωπ=ΩΩ=当为不可约的有理数时,为周期信号 能量信号:直流信号和周期信号都是功率信号。 一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信号 也不是功率信号。 2、 系统的描述及分类 线性: 叠加性、均匀性 时不变:输出和输入产生相同的延时 因果性:输出不超前输入 稳定性:有界输入有界输出 3、 信号与系统分析概述 ※ 第2章 信号的时域分析 信号的分析就是信号的表达。 1、 基本连续信号的定义、性质、相互关系及应用 ()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=- 取样特性:00()()d ()x t t t t x t δ∞ -∞-=? 展缩特性:1 ()() (0)t t δαδαα=≠ ()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=--- 取样特性:00()'()d '()x t t t t x t δ∞ -∞-=-? 展缩特性:1'()'() (0)t t δαδααα= ≠ 2、连续信号的基本运算 翻转、平移、展缩、相加、相乘、微分、积分、卷积

3、基本离散信号 4、离散信号的基本运算 翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积 5、确定信号的时域分解 直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。 第3章 系统的时域分析 1、系统的时域描述 连续LTI 系统:线性常系数微分方程 ()()y t x t 与之间的约束关系 离散LTI 系统:线性常系数差分方程 [][]y k x k 与之间的约束关系 2、 系统响应的经典求解(一般了解) 衬托后面方法的优越 纯数学方法 全解=通解+特解 3、 系统响应的卷积方法求解 ()zi y t :零输入响应,形式取决于微分方程的特征根。 ()zs y t :零状态响应,形式取决于微分方程的特征根及外部输入()x t 。 ()h t :冲激平衡法(微分方程右边阶次低于左边阶次,则()h t 中不含有()t δ及其导数项) (一般了解) []h k :等效初始条件法(一般了解) 4、 ※卷积计算及其性质 ※图形法 ※解析法 等宽/不等宽矩形信号卷积 卷积的基本公式及其性质(交换律、结合律、分配律) ※第4章 信号的频域分析 1、连续周期信号表达为虚指数信号()0jn t e t ω-∞<<∞的线性组合 0=()jn t n n x t C e ω∞-∞= ∑% 完备性、唯一性 ()n x t C ?%(周期信号的频谱)000001 ()T t jn t n t C x t e dt T ω+-=?%

信号与系统重点概念公式总结

信号与系统重点概念公 式总结 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

信号与系统重点概念及公式总结: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复 数的辐角。(复平面) 2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n = 如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(2 1 21 2==≠=?? 则称集合F 为正交函数集 如果n i K i ,2,11==,则称F 为标准正交函数集。 如果F 中的函数为复数函数 条件变为:n i K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(21 21* * ==?≠=???

其中)(*t f i 为)(t f i 的复共轭。2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

欧拉公式的证明

欧拉公式的证明 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

欧拉公式的证明 着名的欧拉公式e^(iθ)=cosθ+isinθ是人们公认的优美公式。原因是指数函数和三角函数在实数域中几乎没有什么联系,而在复数域中却发现了他们可以相互转化,并被一个非常简单的关系式联系在一起。特别是当θ=π时,欧拉公式便写成了e^(iπ)+1=0,就这个等式将数中最富有特色的五个数0,1,i , e , π ,绝妙地联系在一起 方法一:用幂级数展开形式证明,但这只是形式证明(严格的说,在实函数域带着i只是形式上的) 再抄一遍:??? 设z = x+iy 这样 e^z = e^(x+iy)=e^x*e^(iy),就是 e^z/e^x = e^(iy) 用牛顿幂级数展开式 e^x = 1+x+x^2/2!+x^3/3!+.....+x^n/n!+...... 把 e^(iy) 展开,就得到 e^z/e^x = e^(iy) =1+iy-y^2/2!-iy^3/3!+y^4/4!+iy^5/5!-y^6/6!-..... =(1-y^2/2!+y^4/4!-y^6/6!+.....) +i(y-y^3/3!+y^5/5!-....) 由于 cosy = 1-y^2/2!+y^4/4!-y^6/6!+.....,

siny = y-y^3/3!+y^5/5!-.... 所以 e^(x+iy)=e^x*e^(iy)=e^x*(cosy+isiny) 即 e^(iy) = (cosy+isiny) 方法二:见复变函数第2章,在整个负数域内重新定义了sinz cosz而后根据关系推导出了欧拉公式。着个才是根基。由来缘于此。 方法一是不严格的。 再请看这2个积分 ∫sqrt(x^2-1)dx=x*sqrt(x^2-1)/2-ln(2*sqrt(x^2-1)+2x)/2 ∫sqrt(1-x^2)dx=arcsin(x)/2+x*sqrt(1-x^2)/2; 上式左边相当于下式左边乘以i 于是上式右边相当于下式右边乘以i 然后化简就得到欧拉公式 这个证明方法不太严密 但很有启发性 历史上先是有人用上述方法得到了对数函数和反三角函数的关系 然后被欧拉看到了,才得到了欧拉公式 设a t θ ?R,ρ?R+,a^(it)?z有:

信号与系统常用公式 ()

常用 公式 第一章 判断周期信号方法 两个周期信号x(t),y(t)的周期分别为T1和T2,若其周期之比T1/T2为有理数,则其和信号x(t)+y(t)仍然是周期信号,其周期为T1和T2的最小公倍数。 2/2/2/(2/),/N N M M N πβπβ πβπβπβ==仅当为整数时正弦序列才具有周期当为有理数时 正弦序列仍具有周期性, 其周期为取使为整数的最小整数当2为无理数时 正弦序列不具有周期性, 1、连续正弦信号一定是周期信号,而正弦序列不一定是周期序列。 2、两连续周期信号之和不一定是周期信号,而两周期序列之和一定是周期序列。 信号的能量 def 2 ()E f t dt +∞ -∞=? 信号的平均功率 def 2 /2 /2 1lim ()T T T P f t dt T +-→∞=? 冲激函数的特性 '''()()(0)()(0)()f t t f t f t δδδ=- ()()(0)()f t t f t δδ= ()()()()f t t a f a t a δδ-=- ()()(0),f t t dt f δ∞ -∞ =? ()()()f t t a dt f a δ∞ -∞ -=? ()()11()()n n n at t a a δδ= 001 ()()t at t t a a δδ-=- 000()()()()f k k k f k k k δδ-=- ()()()()(1)(0)n n n t f t dt f δ∞ ∞ =-? - ''()()(0)t f t dt f δ∞ ∞ =-?- 动态系统是线性系统的条件 可分解性 {}{}{}{}()()()0,()(0),0f x y y y T f T x ?=?+?=?+???????? 零状态线性 {}{}{}{}{}{}12120,()()0,()0,()T af t bf t aT f bT f +=?+????????????? 零输入线性 {}{}{}{}{}{}1212(0)(0),0(0),0(0),0T ax bx aT x bT x +=+???????????? 判断系统时不变、因果、稳定的方法。 线性时不变的微分和积分特性。 第二章

欧拉公式的证明和应用

欧拉公式的证明和应用-CAL-FENGHAI.Network Information Technology Company.2020YEAR

数学文化课程报告 欧拉公式的证明与应用 一 .序言------------------------------------------------------------------------2 二.欧拉公式的证明--------------------------------------3 1.1 极限法 --------------------------------------3 1.2 指数函数定义法-------------------------------4 1.3 分离变量积分法-------------------------------4 1.4 复数幂级数展开法-----------------------------4 1.5 变上限积分法---------------------------------5

1.6 类比求导法-----------------------------------7 三.欧拉公式的应用 2.1 求高阶导数-----------------------------------7 2.2 积分计算------------------------------------8 2.3 高阶线性齐次微分方程的通解------------------9 2.4 求函数级数展开式----------------------------9 2.5 三角级数求和函数----------------------------10 2.6 傅里叶级数的复数形式-------------------------10 四.结语------------------------------------------------11 参考文献-----------------------------------------------11 一.序言 欧拉是十八世纪最杰出的最多产的数学家之一[1],留下了数不胜数的以其名 字命名的公式。本文关注的欧拉公式x i x e ix sin cos +=,在复数域中它把指数函数 联系在一起。特别当π=x 时,欧拉公式便写成了01=+πi e ,这个等式将最富有特 色的五个数π,,,,10e i 绝妙的联系在一起,“1是实数的基本单位,i 是虚数的基本单位,0是唯一的中性数,他们都具有独特的地位,都具有代表性。i 源于代数,

欧拉公式的证明方法和应用

欧拉公式的证明方法和 应用 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

欧拉公式 θθθ sin cos i e i +=的证明方法和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5],π是圆周率在公园前就被定义为“周长与直径的比”。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 分离变量积分法

信与系统知识点

信与系统知识点 Document serial number【LGGKGB-LGG98YT-LGGT8CB-LGUT-

第1章 信号与系统分析导论 北京交通大学 1、 信号的描述及分类 周期信号: ()000002sin ,sin ,2t T m k N πωωπ= ΩΩ=当为不可约的有理数时,为周期信号 能量信号:直流信号和周期信号都是功率信号。 一个信号不可能既是能量信号又是功率信号,但有少数信号既不是能量信 号也不是功率信号。 2、 系统的描述及分类 线性: 叠加性、均匀性 时不变:输出和输入产生相同的延时 因果性:输出不超前输入 稳定性:有界输入有界输出 3、 信号与系统分析概述 ※ 第2章 信号的时域分析 信号的分析就是信号的表达。 1、 基本连续信号的定义、性质、相互关系及应用

()t δ的性质:筛选特性:000()()()()x t t t x t t t δδ-=- 取样特性:00()()d ()x t t t t x t δ∞ -∞-=? 展缩特性:1 ()() (0)t t δαδαα=≠ ()'t δ的性质:筛选特性:00000()'()()'()'()()x t t t x t t t x t t t δδδ-=--- 取样特性:00()'()d '()x t t t t x t δ∞ -∞-=-? 展缩特性:1 '()'() (0)t t δαδααα=≠ 2、连续信号的基本运算 翻转、平移、展缩、相加、相乘、微分、积分、卷积 3、基本离散信号 4、离散信号的基本运算 翻转、位移、抽取和内插、相加、相乘、差分、求和、卷积 5、确定信号的时域分解 直流分量+交流分量、奇分量+偶分量、实部分量+虚部分量、()[],t k δδ的线性组合。 第3章 系统的时域分析 1、系统的时域描述

复数欧拉公式的证明和应用

复数欧拉公式 θθθ sin cos i e i +=的证明和应用 摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=,举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式、微分中值定理、证明、应用、三角函数 1.欧拉公式意义简说 在我们所学过的指数函数和三角函数在实数域中几乎没有什么联系,在复数域中却可以相互转换,被θθθ sin cos i e i +=这简单的关系联系在一起,这个一直盘踞在许多研究家心里的欧拉公式,有着很多很多的疑问,特别是当πθ=时,有1-=e i π ,即01=+e i π ,这个等式将数学中的最富有特色的五个数0、1、i 、e 、π联系在一起,0,1是实数中特殊的数字,i 是一个很重要的虚数单位,e 是无理数它取自瑞士数学家欧拉(Euler,1707-1783)的英文开头[5], π是圆周率在公园前就被定义为“周长与直径的比” 。它们在数学中各自都有发展的方面。因此e i π +1=0公式充分揭示了数学的统一性、简洁性和奇异性。了解这些内容对于学习高等数学,对于我们在研究较深的数学问题上有很大帮助。 2.欧拉公式的证明简述 在这里,我把几种证明欧拉公式的方法总结在一起,对学者学习欧拉公式提供多方面的题材,并作出知识的一种综合理解。 2.1幂级数展开式的证明法 引用三角函数和指数函数“幂级数展开式”证明欧拉公式θθθ sin cos i e i +=, 2.2复指数定义法 用复指数定义)sin (cos y i y e e e x iy x z +==+,证明欧拉公θθθ sin cos i e i += 2.3类比法求导法 通过实函数的性质来对复函数进行求导运算(附件①),通过构造x i x x f e ix sin cos )(+= , 0)(='x f 用lagrange 微分中值定理推论[3],从而证明1)(=x f ,使得x i x e ix sin cos += 2.4分离变量积分法 假设x i x z sin cos +=,求导得 iz dx dz =,通过分离变量得,idx z dz =,然后两边取积分得

《欧拉公式及其应用》

华北水利水电大学 题目《欧拉公式及其应用》 课程名称:高等数学(2) 专业班级:电子信息工程2012154 成员组成: 联系方式: 2013年5月31 日

摘要:在复数域内用几种不同的方法证明欧拉公式θθθ sin cos i e i +=, 举例说明欧拉公式在数学中的几类应用,通过总结多种方法看问题的思想来解决问题,通过几种不同种类的问题的解决方案让读者更加明白欧拉公式在学习中的多方面思想和数学中的重要性。 关键词:欧拉公式,证明,应用 英文题目"Euler formula and its application" Abstract: The different methods of several in the complex domain that Euler's formula, illustrates several kinds of application of Euler's formula in mathematics, to solve the problem through the summary of many ways to look at problems of the mind, through the solution of several kinds of problems that the reader more understood the importance of Euler in learning many aspects of the theory and the mathematical formula in the. Key words: Euler formula Prove application

信号与系统概念公式总结

信号与系统概念,公式集: 第一章:概论 1.信号:信号是消息的表现形式。(消息是信号的具体内容) 2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。 第二章:信号的复数表示: 1.复数的两种表示方法:设C 为复数,a 、b 为实数。 常数形式的复数C=a+jb a 为实部,b 为虚部; 或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。(复平面) 2.欧拉公式: wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解 1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n Λ= 如果满足: n i K dt t f j i dt t f t f i T T i T T j i Λ2,1)(0)()(2 1 2 12 ==≠=? ? 则称集合F 为正交函数集 如果n i K i Λ,2,11 ==,则称F 为标准正交函数集。 如果F 中的函数为复数函数

条件变为: n i K dt t f t f j i dt t f t f i T T i i T T j i Λ2,1)()(0)()(2 1 2 1* *==?≠=?? ? 其中)(*t f i 为)(t f i 的复共轭。 2.正交函数集的物理意义: 一个正交函数集可以类比成一个坐标系统; 正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点; 点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。 3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。 如果在正交函数集()()()()t g n Λ,t g ,t g ,t g 321之外,不存在函数x (t ) ()∞<

相关主题