当前位置:文档之家› 16三角函数的应用11

16三角函数的应用11

16三角函数的应用11

三角函数实际应用

1.如图,一艘核潜艇在海面下500米A点处测得俯角为30°正前方的海底有黑匣子信号发出,继续在同一深度直线航行3000米后再次在B点处测得俯角为60°正前方的海底有黑匣子信号发出,求海底黑匣子C点处距离海面的深度?(保留根号) 2.如图,甲乙两幢楼之间的距离BD=30m,自甲楼顶端A处测得乙楼顶端C处的仰角为45°,测得乙楼底部D处的俯角为26.6°,求甲、乙楼两幢楼的高度. (参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50) 3.如图,哨兵在灯塔顶部A处测得遇难船只所在地B处的俯角为60°,然后下到灯塔的C 处,测得B处的俯角为30°.已知AC=40米,若救援船只以5m/s 的速度从灯塔底部D处出发,几秒钟后能到达遇难船只的位置?(结果精确到个位). 4.如图,大楼AB的高为16m,远处有一塔CD,小在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)

5.在一次数学活动课上,老师带领学生去测一条南北流向河流的河宽,如图所示,某学生在河东岸点A处观测河对岸水边点C,测得C在A北偏西30°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西60°的方向上.请你根据以上数据,帮助该同学计算出这条河的宽度.(精确到0.1,参考数据:). 6.校园中的一棵大树PC在下的影长为AC,在树的影长端点A处测得∠PAC=30°,在B点(点B在直线AC上)测得∠PBC=60°,如果AB=12m,求树高PC和树的影长AC. 7.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=12,试求CD的长. 8.在一个明媚、清风徐徐的周末,小明和小强一起到郊外放风筝.他们把风筝放飞后,两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高? (2)求风筝A与风筝B的水平距离.(结果精确到0.01m,≈1.414,≈1.732)

陕西省中考数学解答专项锐角三角函数的实际应用题库(1)

锐角三角函数的实际应用 1. 如图为放置在水平桌面上的台灯的平面示意图,灯臂AO 长为40 cm ,与水平面所形成的夹角∠OAM 为75°,由光源O 射出的边缘光线OC 、OB 与水平面所形成的夹角∠OCA 、∠OBA 分别为90°和30°,求该台灯照亮水平面的宽度BC .(结果精确到 1 cm ,参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,3≈1.73). 第1题图 解:∵tan∠OBC =tan30°= 33OC BC ,∴OC =3 3 BC , ∵sin∠OAC =sin75°= OC OA ≈0.97, ∴3340 BC ≈0.97, ∴BC ≈67(cm). 答:该台灯照亮水平面的宽度BC 约为67 cm. 2. 某种三角形台历放置在水平桌面上,其左视图如图②所示,点O 是台历支架OA ,OB 的交点,同时又是台历顶端连接日历的螺旋线圈所在圆的圆心,现测得OA =OB =14 cm ,CA =CB =4 cm ,∠ACB =120°,台历顶端螺旋连接线圈所在圆的半径为0.6 cm.求点O 到直线AB 的距离.(结果保留根号 ) 第2题图 解:如解图,连接AB 、OC ,并延长OC 交AB 于点D ,

第2题解图 ∵OA =OB ,AC =BC , ∴OC 垂直平分AB ,即AD =BD ,∠CDA =90°, 又∠ACB =120°,∠ACD =60°, ∴在Rt△ACD 中,sin∠ACD =AD AC , ∴AD =AC ·sin60°=4× 3 2 =23cm , ∵在Rt△AOD 中,AD =2 3 cm ,AO =14 cm , ∴OD =AO 2 -AD 2 =142 -(23)2 =246 cm , ∴点O 到直线AB 的距离为246 cm. 3. 如图①是一台仰卧起坐健身器,它主要由支架、坐垫、靠背和档位调节器组成,靠背的角度α可以用档位调节器调节,将图①仰卧起坐板的主体部分抽象成图②,已知OA =OD =81 cm ,OC =43 cm ,∠C =90°,∠A =20°.求BC 的长和点O 到地面的距离.(结果保留整数)(参考数据:sin20°≈0.3420,cos20°≈0.9397,tan20°≈0.3640;sin80°≈0.9848,cos80°≈0.1736,tan80°≈5.6713) 第3题图 解:根据题意可知AC =OA +OC =81+43=124 (cm), 在Rt△ABC 中,tan A =BC AC , ∴BC =AC ·tan A ≈124×0.3640≈45(cm), 如解图,过点O 作OE ⊥AB 于点E ,

第四章 三角函数与三角形4-7应用举例

第4章 第7节 一、选择题 1.(2010·广东六校)两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )km.( ) A .a B.2a C .2a D.3a [答案] D [解析] 依题意得∠ACB =120°. 由余弦定理 cos120°=AC 2+BC 2-AB 22AC ·BC ∴AB 2=AC 2+BC 2-2AC ·BC cos120° =a 2+a 2-2a 2????-1 2=3a 2 ∴AB =3a .故选D. 2.(文)(2010·广东佛山顺德区质检)在△ABC 中,“sin A >32”是“∠A >π 3 ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] 在△ABC 中,若sin A >32,则∠A >π3,反之∠A >π3时,不一定有sin A >3 2 ,如A =5π6时,sin A =sin 5π6=sin π6=1 2 . (理)在△ABC 中,角A 、B 所对的边长为a 、b ,则“a =b ”是“a cos A =b cos B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] 当a =b 时,A =B , ∴a cos A =b cos B ; 当a cos A =b cos B 时, 由正弦定理得 sin A ·cos A =sin B ·cos B ,

∴sin2A =sin2B , ∴2A =2B 或2A =π-2B , ∴A =B 或A +B =π 2. 则a =b 或a 2+b 2=c 2. 所以“a =b ”?“a cos A =b cos B ”, “a cos A =b cos B ”?/ “a =b ”,故选A. 3.已知A 、B 两地的距离为10km ,B 、C 两地的距离为20km ,观测得∠ABC =120°,则AC 两地的距离为( ) A .10km B.3km C .105km D .107km [答案] D [解析] 如图,△ABC 中,AB =10,BC =20,∠B =120°,由余弦定理得, AC 2=AB 2+BC 2-2AB ·BC ·cos120° =102+202-2×10×20×????-1 2=700, ∴AC =107km.∴选D. 4.(文)在△ABC 中,sin 2A 2=c -b 2c (a 、b 、c 分别为角A 、B 、C 的对应边),则△ABC 的 形状为( ) A .正三角形 B .直角三角形 C .等腰直角三角形 D .等腰三角形 [答案] B [解析] sin 2A 2=1-cos A 2=c -b 2c ,∴cos A =b c , ∴b 2+c 2-a 22bc =b c ,∴a 2+b 2=c 2,故选B. (理)(2010·河北邯郸)在△ABC 中,sin 2A +cos 2B =1,则cos A +cos B +cos C 的最大值为( ) A.54 B. 2 C .1 D.32 [答案] D [解析] ∵sin 2A +cos 2B =1,∴sin 2A =sin 2B , ∵0

三角函数应用题练习及答案

三角函数的应用题 第一阶梯 [例1]如图,AD〃BC, AC丄BC,若AD二3, DC二5,且ZB二30° ,求AB 的长。 解:TZDAC二90。由勾股泄理,有CD:=AD:+AC: ???AD二3, DC二5 ???AC 二4 ??? ZB 二30 ° ???AB 二2AC ???AB 二8 丄 [例2]如图,ZUBC 中,ZB二90° , D 是BC 上一点,且AD二DC,若tgZDAC 二4, 求tgZBADo 探索:已知tgZDAC是否在直角三角形中?如果不在怎么办?要求ZBAD的正切值需要满足怎样的条件?点拨:由于已知中的tgZDAC不在直角三角形中,所以需要转化到直角三角形中,即可地D点作AC的垂线。 又要求ZBAD的正切值应已知RtABAD的三边长,或两条直角边AB、BD的长,根据已知可知没有提 供边长的条件,所以要充分利用已知中的tgZDAC的条件。由于AD二DC,即ZC=ZDAC,这时也可把正 切值直接移到RtAABC中。 解答:过D点作DE丄AC于E, ?/ /gZDAC = * DE 且以DAC花 设DE二k,则AE=4k TAD 二DC, A ZDAC=ZC, AE=EC ???AC 二8k fgC = ? ? 设AB二m, BC=4m 由勾股定理,有AB:+BC:=AC: 8眄tn = - k ???17 由勾股左理,有 CD:=DE:+EC:

[例 3]如图,四边形 ABCD 中,ZD 二90° , AD 二3, DC=4> AB 二 13, BC 二 12,求 sinB 。 探索:已知条件提供的图形是什么形?其中ZD 二90° , AD 二3, DC 二4,可提供什么知识?求sinB 应放在什么 图形中。 点拨:因已知是四边形所以不能求解,由于有ZD 二90° , AD 二3, DC 二4,这样可求AC 二5,又因有AB 二13, BC 二12, 所以可证AABC 是RtA>因此可求sinBo 解:连结AC I ZD 二90 ° 由勾股圧理,有 AC : =CD =+CD 2 TAD 二3, CD 二4, ???AC 二 5 TAB 二 13, BC 二 12 /. 13:=12:+52 ??? ZACB=90° ??? CD = 4vik .?他=込 17 由正切左理,有 5唱 tgZBAD= 吕

三角函数应用题库.doc

三角函数应用题库 选择题: 1.轮船航行到C处测得小岛A的方向为北偏西27°,那么从A观测此时C?处的方向为() A.南偏东27° B.东偏西27° C.南偏东73° D.东偏西73° 2.在Rt△ABC中,∠C=90°,BC=a,AC=b,且3a=4b,则∠A的度数是() A.53.7° B.53.13° C.53°13′ D.53°48′ 3.如果坡角的余弦值为31010,那么坡度为() A 1:10 B.3:10 C.1:3 D.3: 1 4.若等腰△ABC 的底边BC上高为2,cotB=12,则△ABC的周长为() A.2+5 B.1+25 C.2+25 D.4+5 5.每周一学校都要举行庄严的升国旗仪式,让我们体会到了国旗的神圣,某同学产生了用所学知识测量旗杆高度的想法,在地面距杆脚5米远的地方,?他用测倾器测得杆顶的仰角为α,且tanα=3,则杆高(不计测倾器高度)为() A.10m B.12m C.15m D.20m 6.如图1所示,在锐角△ABC中,BE⊥AC,∠ADE=∠C,记△ADE的面积为S1,△ABC 的面积为S2,则12SS=() A.si n2A B.c os2A C.ta n2A D.co t2A (1) (2) (3) 7.已知楼房AB 高50m,?如图2所示,?电视收视塔塔基距楼房房基的水平距离BD?为50m,塔高DC为1505033?m,则下列结论正确的是() A.由楼顶望塔顶仰角为60° B.由楼顶望塔顶俯角为60° C.由楼顶望塔顶仰角为30° D.由楼顶望塔基俯角为30° 8.一树的上段CB被风折断,树梢着地,树顶着地处B与树根A相距6m,则原来的树高是()(折断后树梢与地面成30°角)。 A、3m B、9m C、33 m D、m36

高中数学必修4三角函数常考题型三角函数线及其应用(供参考)

三角函数线及其应用 【知识梳理】 1.有向线段 带有方向的线段叫做有向线段. 2.三角函数线 图示 正弦线 α的终边与单位圆交于P ,过P 作PM 垂直于x 轴,有向线段MP 即为正弦线 余弦线 有向线段OM 即为余弦线 正切线 过A (1,0)作x 轴的垂线,交α的终边或其终边的反向延长线于T ,有向线段AT 即 为正切线 题型一、三角函数线的作法 【例1】 作出3π4 的正弦线、余弦线和正切线. [解] 角3π4 的终边(如图)与单位圆的交点为P . 作PM 垂直于x 轴,垂足为M ,过A (1,0)作单位圆的切线AT , 与3π4的终边的反向延长线交于点T ,则3π4 的正弦线为MP ,余弦线为OM ,正切线为AT . 【类题通法】 三角函数线的画法 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得正弦线和余弦线. (2)作正切线时,应从A (1,0)点引单位圆的切线,交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 【对点训练】 作出-9π4 的正弦线、余弦线和正切线.

解:如图所示, -9π4的正弦线为MP ,余弦线为OM ,正切线为AT . 题型二、利用三角函数线比较大小 【例2】 分别比较sin 2π3与sin 4π5;cos 2π3与cos 4π5;tan 2π3与tan 4π5 的大小. [解] 在直角坐标系中作单位圆如图所示.以x 轴非负半轴为始边 作2π3 的终边与单位圆交于P 点,作PM ⊥Ox ,垂足为M .由单位圆与Ox 正方向的交点A 作Ox 的垂线与OP 的反向延长线交于T 点,则sin 2π3=MP ,cos 2π3=OM ,tan 2π3 =AT . 同理,可作出4π5的正弦线、余弦线和正切线,sin 4π5=M ′P ′,cos 4π5=OM ′,tan 4π5 =AT ′.由图形可知,MP >M ′P ′,符号相同,则sin 2π3>sin 4π5;OM >OM ′,符号相同,则cos 2π3>cos 4π5 ;AT MP >OM ; 当π2<α<3π4 时,角α的正弦线为M ′P ′,余弦线为OM ′,正切

三角函数在实际生活中的应用

三角函数在实际生活中的应用 目录 摘要:1 关键词:3 1引言3 1.1三角函数起源3 2三角函数的基础知识4 2.1下列是关于三角函数的诱导公式5 2.2两角和、差的正弦、余弦、正切公式7 2.3二倍角的正弦、余弦、正切公式7 3.三角函数与生活7 3.1火箭飞升问题7 3.2电缆铺设问题8 3.3救生员营救问题9 3.4足球射门问题10 3.5食品包装问题10 3.6营救区域规划问题11 3.7住宅问题12 3.8最值问题13 4 总结14 Abstract

Trigonometric function in the course of historical development of continuous improvement, has formula, rich thoughts, flexible, permeability is strong and so on。The characteristic is not only an important part of scientific research, or in mathematics learning to key and difficult. In a word it in teaching and other fields has important role. In this paper, we will make a brief discussion about the application of trigonometric functions in solving practical problems. Keywords:mathematics trigonometric function Application of trigonometric function 摘要: 三角函数在历史的发展过程中不断完善,具有公式多、思想丰富、变化灵活、渗透性强等特点,不仅是科学研究的重要组成部分,还是数学学习中得重点难点,

中考数学专题复习——锐角三角函数的实际应用

课题:锐角三角函数的实际应用 【基础知识回顾】 知识点1:锐角三角函数的概念(正弦、余弦、正切、余切) 技巧点拨: ①弦——分母都是斜边 ②正弦——分子是正对的边(谐音“正邪”) ③切——垂直的意思,只与直角边有关 ④正切——分子是正对的边 ⑤余——剩余的意思 余弦——分子是剩下的直角边(即邻边) 余切——分子是剩下的直角边(即邻边) 简记为:正弦——对比斜(或正比斜) 正切——对比邻 余弦——邻比斜 知识点2:常见的锐角三角函数值 三角函数 30° 45° 60° 技巧点拨 sin α 21 22 23 分母都是2,分子分别是 √13 cos α 2 3 22 21 分母都是2,分子分别是 3√1 tan α 33 1 3 分母都是3,分子分别是 3、1、3 【新课知识讲解】 知识点3:解直角三角形 1、解直角三角形的概念

在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直 角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。 2、解直角三角形的理论依据 在Rt △ABC 中,∠C=90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c (1)三边之间的关系:222c b a =+(勾股定理) (2)锐角之间的关系:∠A+∠B=90°(三角形角和) (3)边角之间的关系:(锐角三角函数) b a B a b B c a B c b B a b A b a A c b A c a A ========cot ,tan ,cos ,sin ;cot ,tan ,cos ,sin 知识点4:直击中考——解直角三角形的实际应用:测距、测高、测长 等 例1、如图,直升飞机在跨河大桥AB 的上方点P 处,此时飞机离地面的高度PO =450 m ,且A ,B ,O 三点在一条直线上,测得∠α=30°,∠β=45°,求大桥 AB 的长(结果保留根号). 【分析】 第一步:确定相关直角三角形 本题中∠α、∠β分别在Rt ΔAOP 、Rt ΔBOP 中(由平行线错角相等转化已知角) 第二步:分别在直角三角形中列出已知角的锐角三角函数值 第三步:代入已知条件求值,并简答 【答案】 由题意得,ΔAOP 、ΔBOP 均为直角三角形, ∠PAO=∠α=30°,∠PBO=∠β=45°,PO=450m

三角函数线的解题功能(教师版)

三角函数线的解题功能 一.求三角函数的定义域 例1.求下列函数的定义域: 分析: 首先作出单位圆,然后根据各问题的约束条件利用三角函数线画出角x 满足条件的终边范围. 解: (1)如图1, (2)如图2, 点评: 三角函数线的主要作用是解三角不等式,比较大小及求函数定义域. 二.解三角不等式 例2.已知|cos θ|≤|sin θ|,求θ的取值范围. 分析: 我们可以在单位圆中作出正弦线和余弦线绝对值相等的角,再找出满足|cos θ|≤|sin θ|的θ角范围. 解:如图3所示,根据|cos θ|=|sin θ|,即θ角正弦线的绝对值和θ角余弦线的绝对值相等,则θ角的终边落在y=x 和y=-x 上,满足|cos θ|≤|sin θ|的θ角的终边落在阴影部分, 点评:本题主要考查根据正弦线和余弦线作出角θ的范围,再写出角θ的集合. 三. 比较大小 例3.比较下列各组数的大小: 分析:我们可以考虑利用三角函数线,根据正弦线、余弦线、正切线来比较它们的大小. 解:(1)如下图所示,在单位圆中作出的余弦线OM 2和OM 1, ∵OM 1

∵MP1,也可以利用三角函数线来证明,此外该结论还可推广,若θ为任意角,则有|sin θ|+| cos θ|≥1. [三角函数线基础练习一] 1、= 2205sin A . 2 1 B .2 1- C . 2 2 D .2 2- 2、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( ) A .π4 B .3π4 C .7π4 D .3π4 或 7π4 3、若0<α<2π,且sin α< 2 3 , cos α> 12 .利用三角函数线,得到α的取值范围是( ) A .(-π3 ,π3 ) B .(0,π3 ) C .(5π3 ,2π) D .(0,π3 )∪(5π 3 ,2π) 4、若π4 <θ < π 2 ,则下列不等式中成立的是 ( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C . tan θ>sin θ>cos θ D .sin θ>tan θ>cos θ 5、函数| tan |tan cos |cos ||sin |sin x x x x x x y ++=的值域是 ( ) A .{1} B .{1,3} C .{-1} D .{-1,3} 6、依据三角函数线,作出如下四个判断: ①sin π6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π5 >sin 4π 5 .其中判断正确的有 ( ) A .1个 B .2个 C .3个 D .4个 7、若-2π3 ≤θ≤π 6 ,利用三角函数线,可得sin θ的取值范围是 . 8、若∣cos α∣<∣sin α∣,则∈α . 9、利用三角函数线,写出满足下列条件的角x 的集合. ⑴ sin x ≥ 2 2 ;⑵ cos x ≤ 12 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x .

数学必修五 三角函数应用举例 教学设计

数学必修五三角函数应用举例教学设计 教学分析 本章通过章头图中的古建筑和台风问题实例,引入要学习的数学知识,由此可见实际测量在本章的中心地位.实际上解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.教学时要充分利用数形结合的方法,充分利用多媒体课件给学生以动态演示,加强直观感知.学习这部分知识有助于增强学生应用数学的意识和提高解决实际问题的能力.本节教材提出了四个问题:问题1和问题2为测量题.这类问题在我们的日常生活中比比皆是,学生对实际背景非常熟悉,这给教学带来了极大的便利.由于底部不可到达,这类问题不能直接用解直角三角形的方法来解决,但用正弦定理和余弦定理就可以计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.问题3是介绍解决平衡力系的数学方法.学习此题教师应先引导学生简要地复习一下向量求和的平行四边形法则和三角形法则.问题4是解三角形方法用于天气预报的一个典型例子,有很好的教育价值.本节学习可增强学生的数学应用意识,激发学生学习数学的积极性.由于解决的是一些实际问题,在进行近似计算时,要求学生算法要简练、清楚,计算要准确.本节后的练习和习题都是解三角形应用的基本题,应要求学生全部掌握.三维目标 1.通过巧妙的设疑,结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,使学生能够运用正弦定理、余弦定理等知识解决一些有关测量距离的实际问题.同时通过多媒体课件直观演示,加强学生的动态感知,帮助学生掌握常规解法,能够通过类比解决实际问题. 2.通过对解斜三角形在实际中应用的讲解,让学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用,同时

三角函数在实际中的应用

专题3 锐角三角函数在实际中的应用 解题技巧: 1.如果图形不是直角三角形,一定要考虑添加适当的辅助线(作平行线或作垂线),构造直角三角形,然后选择恰当的三角函数(正弦、余弦或正切); 2.在求线段长度的时候,如果不能直接求出长度,可以考虑列方程求值。 一仰角、俯角问题 1.某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上). (1)求小敏到旗杆的距离DF.(结果保留根号) (2)求旗杆EF的高度.(结果保留整数,参考数据:≈1.4,≈1.7) 2.如图所示,某古代文物被探明埋于地下的A处,由于点A上方有一些管道,考古人员不能垂直向下挖掘,他们被允许从B处或C处挖掘,从B处挖掘时,最短路线BA与地面所成的锐角是56°,从C处挖掘时,最短路线CA与地面所成的锐角是30°,且BC=20m,若考古人员最终从B处挖掘,求挖掘的最短距离.(参考数据:sin56°=0.83,tan56°≈1.48,≈1.73,结果保留整数)

3.(2014潍坊)如图,某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是45°,然后沿平行于AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是60°,求两海岛间的距离AB. 4.一电线杆PQ立在山坡上,从地面的点A看,测得杆顶端点A的仰角为45°,向前走6m 到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°, (1)求∠BPQ的度数; (2)求该电线杆PQ的高度.(结果精确到1m) 5.如图,为了开发利用海洋资源,某勘测飞机测量一岛屿两端A、B的距离,飞机以距海平面垂直同一高度飞行,在点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行了500米,在点D测得端点B的俯角为45°,已知岛屿两端A、B的距离541.91米,求飞机飞行的高度.(结果精确到1米,参考数据:≈1.73,≈1.41)

数学必修五-三角函数应用举例-教学设计

数学必修五-三角函数应用举例-教学设计

数学必修五三角函数应用举例教学设计 教学分析 本章通过章头图中的古建筑和台风问题实例,引入要学习的数学知识,由此可见实际测量在本章的中心地位.实际上解斜三角形知识在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识.对于解斜三角形的实际问题,我们要在理解一些术语(如坡角、仰角、俯角、方位角、方向角等)的基础上,正确地将实际问题中的长度、角度看成三角形相应的边和角,创造可解的条件,综合运用三角函数知识以及正弦定理和余弦定理来解决.教学时要充分利用数形结合的方法,充分利用多媒体课件给学生以动态演示,加强直观感知.学习这部分知识有助于增强学生应用数学的意识和提高解决实际问题的能力. 本节教材提出了四个问题:问题1和问题2为测量题.这类问题在我们的日常生活中比比皆是,学生对实际背景非常熟悉,这给教学带来了极大的便利.由于底部不可到达,这类问题不能直接用解直角三角形的方法来解决,但用正弦定理和余弦定理就可以计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.问题3是介绍解决平衡力系的数学方法.学习此题教师应先引导学生简要地复习一下向量求和的平行四边形法则和三角形法则.问题4是解三角形方法用于天气预报的一个典型例子,有很好的教育价值. 本节学习可增强学生的数学应用意识,激发学生学习数学的积极性.由于解决的是一些实际问题,在进行近似计算时,要求学生算法要简练、清楚,计算要准确.本节后的练习和习题都是解三角形应用的基本题,应要求学生全部掌握. 三维目标 1.通过巧妙的设疑,结合学生的实际情况,采用“提出问题——引发思考——探索猜想——总结规律——反馈训练”的教学过程,使学生能够运用正弦定理、余弦定理等知识解决一些有关测量距离的实际问题.同时通过多媒体课件直观演示,加强学生的动态感知,帮助学生掌握常规解法,能够通过类比解

中考数学 全面突破:第十二讲 锐角三角函数及其实际应用

第十二讲 锐角三角函数及其实际应用 命题点分类集训 命题点1 特殊角的三角函数值 【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分). 【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现. 1. sin 60°的值等于( ) A . 12 B . 22 C . 3 2 D . 3 1. C 2. 下列式子错误.. 的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30° 2. D 选项 逐项分析 正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1 tan75° ×tan75°=1 √ C sin 2A +cos 2A =1 √ D ∵sin60°= 32,2sin30°=2×1 2 =1,∴sin60°≠2sin30° × 3. 已知α,β均为锐角,且满足|sin α-12 |+(tan β-1)2 =0,则α+β=________. 3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =1 2,tan β =1,又因为α、β均为锐角,则α=30°, β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系 【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边 及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值. 【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注. 4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34 B . 43 C . 35 D . 45

《三角函数线的应用》专题

《三角函数线的应用》专题 2014年( )月( )日 班级 姓名 作为一次经历,失败有时比成功更有价值。 作出下列各角的正弦线、余弦线和正切线. (1)-π4; (2)17π6; (3)10π3. 作出下列各象限的正弦线、余弦线和正切线. 关于三角函数线,要注意以下几点: (1)正弦线、余弦线、正切线都是 线段,利用它们的数量来表示 ,是数形结合的典型体现。 2)作三角函数线时,所用字母一般都是固定的,书写顺序也不能颠倒。特别要注意正切线必在过A (1,0)的单位圆的切线上(其中二、三象限角需作终边的反向延长线)。 (3)对于终边在坐标轴上的角,有时三角函数线退化为一个点,有时又为整个半径。当角α的终边在y 轴上时,角α的正切线不存在。 【类型一】求角的取值 求分别符合下列条件的各角的集合: (1)sin α=; (2)cos α=; (3)tan α=

【类型二】求角的范围 例2 在[0,2]π上满足1sin 2 x ≥的x 的取值范围 练习:在[0,2]π上满足1cos 2 x ≤-的x 的取值范围 【类型三】比较大小 例3 比较sin1155°与sin(-1654°)的大小。 练习1:下列不等式成立的是 A 、00sin 70sin170> B 、00sin130sin140< C 、00tan130tan140> D 、00cos130cos140< 练习2:已知,,42ππα??∈ ??? 比较cos tan αααα、 sin 、、 的大小关系 练习3:已知(0,)2π α∈,比较sin α,cos α,tan α。 【类型四】求函数的定义域

专题一 三角函数的实际应用

专题一三角函数的实际应用 1.(2005?深圳)大楼AD的高为10米,不远处有一塔BC,某人在楼底A处测得塔顶B处的仰角为60°,爬到楼顶D点测得塔顶B点的仰角为30°,求塔BC的高度. 2.(2007?深圳)如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A 处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由. 3.(2008?深圳)某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在 地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/ 秒,求这架无人飞机的飞行高度.(结果保留根号)

4.(2010?深圳)科技改变生活,手机导航极大方便了人们的出行,如图35-17,小明一家自驾到古镇C 游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4 km至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离. 5.(2012?深圳)如图,某数学兴趣小组要测量一栋五层居民楼CD的高度.该楼底层为车库,高2.5 m,上面五层居住,每层高度相等.测角仪支架离地1.5 m,在A处测得五楼顶部点D的仰角为60°,在B处测得四楼顶部点E的仰角为30°,AB=14 m.求居民楼高度(精确到0.1 m,参考数据:3≈1.73). 6.(2015?深圳)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6 m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°. (1)求∠BPQ的度数; (2)求该电线杆PQ的高度(结果精确到1 m,备用数据:3≈1.7,2≈1.4).

三角函数线应用举例

一.求三角函数的定义域 例1.求下列函数的定义域: 分析: 首先作出单位圆,然后根据各问题的约束条件利用三角函数线画出角x 满足条件的终边范围. 解: (1)如图1, (2)如图2, 点评: 三角函数线的主要作用是解三角不等式,比较大小及求函数定义域. 二.解三角不等式 例2.已知|cos θ|≤|sin θ|,求θ的取值范围. 分析: 我们可以在单位圆中作出正弦线和余弦线绝对值相等的角,再找出满足|cos θ|≤|sin θ|的θ角范围. 解:如图3所示,根据|cos θ|=|sin θ|,即θ角正弦线的绝对值和θ角余弦线的绝对值相等,则θ角的终边落在y=x 和y=-x 上,满足|cos θ|≤|sin θ|的θ角的终边落在阴影部分, 点评:本题主要考查根据正弦线和余弦线作出角θ的范围,再写出角θ的集合. 三. 比较大小 例3.比较下列各组数的大小: 分析:我们可以考虑利用三角函数线,根据正弦线、余弦线、正切线来比较它们的大小. 解:(1)如下图所示,在单位圆中作出的余弦线OM 2和OM 1, ∵OM 1

例4.利用三角函数线证明:|sin α|+|cos α|≥1. 分析:找出角α的正余弦线,数形结合易证. 证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,而余弦线(正弦线)的长等于r(r=1). 所以|sin α|+|cos α|=1. 当角α的终边落在一个象限时,如图所示,利用三角形两边之和大于第三边有: |sin α|+|cos α| =|MP|十|OM|>1. 综上有|sin α|+|cos α|≥1. 点评:本题利用三角函数定义,把三角问题转化为代数问题而获解决,这种方法,值得重视.对于sin θ+cos θ>1,也可以利用三角函数线来证明,此外该结论还可推广,若θ为任意角,则有|sin θ|+| cos θ|≥1. [三角函数线基础练习一] 1、= 2205sin A . 2 1 B .2 1- C . 2 2 D .2 2- 2、角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异.那么α的值为( ) A .π4 B .3π4 C .7π4 D .3π4 或 7π 4 3、若0<α<2π,且sin α< 2 3 , cos α> 12 .利用三角函数线,得到α的取值范围是( ) A .(-π3 ,π3 ) B .(0,π3 ) C .(5π3 ,2π) D .(0,π3 )∪(5π 3 ,2π) 4、若π4 <θ < π 2 ,则下列不等式中成立的是 ( ) A .sin θ>cos θ>tan θ B .cos θ>tan θ>sin θ C . tan θ>sin θ>cos θ D .sin θ>tan θ>cos θ 5、函数| tan |tan cos |cos ||sin |sin x x x x x x y + +=的值域是 ( ) A .{1} B .{1,3} C .{-1} D .{-1,3} 6、依据三角函数线,作出如下四个判断: ①sin π6 =sin 7π6 ;②cos (-π4 )=cos π4 ;③tan π8 >tan 3π8 ;④sin 3π 5 >sin 4π 5 .其中判断正确的有 ( ) A .1个 B .2个 C .3个 D .4个 7、若-2π3 ≤θ≤π 6 ,利用三角函数线,可得sin θ的取值范围是 . 8、若∣cos α∣<∣sin α∣,则∈α . 9、利用三角函数线,写出满足下列条件的角x 的集合. ⑴ sin x ≥ 2 2 ;⑵ cos x ≤ 12 ;⑶ tan x ≥-1 ;(4)21sin ->x 且21cos >x .

三角函数实际应用经典总结

三角函数的实际应用 知识: 直角三角形中其他重要概念 ⑴ 仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴. ⑵ 坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表 示为h i l =,坡面与水平面的夹角记作α,叫做坡角,则tan h i l α==.坡度越大,坡 面就越陡.如图⑵. ⑶ 方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶. 图(3) 图(2) 图(1) 俯角 仰角视线 视线 水平线 铅垂线 2. 解直角三角形应用题的解题步骤及应注意的问题: ⑴ 分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义; ⑵ 找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形); ⑶ 根据已知条件,选择合适的边角关系式解直角三角形; ⑷ 按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位 3. 0°、30°、45°、60°、90°特殊角的三角函数值(重要)

典型例题 类型一.所求线段由两段和差组成。 例题1.(2018成都) 由我国完全自主设计、自主建造的首舰国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A 处时,测得小岛C 位于它的北偏东70?方向,且于航母相距80海里,再航行一段时间后到达处,测得小岛C 位于它的北偏东37?方向.如果航母继续航行至小岛C 的正南方向的D 处,求还需航行的距离BD 的长.(参考数据:sin700.94?≈,cos700.34?≈,tan70 2.75?≈,sin370.6?≈, cos370.80?≈,tan370.75?≈) 变式1.为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道 M 处测得某居民楼顶的仰角∠ABC 的度数是 20°,仪器 BM 的高是 0.8m ,点M 到护栏的距离 MD 的长为 11m ,求需要安装的隔音屏的顶部到桥面的距离 ED 的长(结果保留到 0.1m ,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

相关主题