当前位置:文档之家› 汽车构造之驱动桥

汽车构造之驱动桥

汽车构造之驱动桥

汽车构造之驱动桥

汽车驱动桥的详细结构与分类

驱动桥的详细结构及分类 我爱车网类型:转载来源:腾讯汽车时间:2011-03-02 作者: 驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 (1)非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 整体式驱动桥即非断开式驱动桥组成 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

驱动桥的工作原理

驱动桥的工作原理 驱动桥处于动力传动系的末端,其基本功能有如下三个方面: 1、增大由传动轴或变速器传来的转矩,并将动力传到驱动轮,产生牵引力。 2、通过差速器将动力合理的分配给左、右驱动轮,使左右驱动轮有合理的转速 差,使汽车在不同路况下行驶。 3、承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。 驱动桥的组成: 驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。 1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮;7-主减速器主动锥齿轮 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速。通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 A、在主减速器内完成双级减速 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。 主动圆锥齿轮旋转,带动从动圆银齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动 B、轮边减速: 将二级减速器设计在轮毂中,其结构是半轴的末端是小直径的外齿轮,周围有一组行星齿轮(一般5个),轮毂内有齿包围这组行星齿轮,以达到减速驱动的目的。 优点: a、由于半轴在轮边减速器之前,所承受扭矩减小,减速性能更好(驱动力加大); b、半轴、差速器等尺寸减小,车辆通过性能大大提高。 缺点: a、结构复杂,成本增加。 b、载质量大、平顺性小(故只用于重型车)。

差速器的结构及工作原理 图解

差速器的结构及工作原理(图解) 汽车差速器是一个差速传动机构,用来保证各驱动轮在各种运动条件下的动力传递,避免轮胎与地面间打滑。 当汽车转弯行驶时,外侧车轮比内侧车轮所走过的路程长(图D-C5-5);汽车在不平路面上直线行驶时,两侧车轮走过的曲线长短也不相等; 即使路面非常平直,但由于轮胎制造尺寸误差,磨损程度不同,承受的载荷不同或充气压力不等,各个轮胎的实际上不可能相等,若两侧车轮都固定在同一转轴上,两轮角速度相等,则车轮必然出现边滚动边滑动的现象。 差速器的作用 车轮对路面的滑动不仅会加速轮胎磨损,增加汽车的动力消耗,而且可能导致转向和制动性能的恶化。 若主减速器从动齿轮通过一根整轴同时带动两侧驱动轮,则两侧车轮只能同样的转速转动。为了保证两侧驱动轮处于纯滚动状态,就必须改用两根半轴分别连接两侧车轮,而由主减速器从动齿轮通过差速器分别驱动两侧半轴和车轮,使它们可用不同角速度旋转。

这种装在同一驱动桥两侧驱动轮之间的差速器称为轮间差速器。 在多轴驱动汽车的各驱动桥之间,也存在类似问题。为了适应各所处的不同路面情况,使各驱动桥有可能具有不同的输入角速度,可以在各驱动桥之间装设轴间差速器。 布置在前驱动桥(前驱汽车)和后驱动桥(后驱汽车)的差速器,可分别称为前差速器和后差速器,如安装在四驱汽车的中间传动轴上,来调节前后轮的转速,则称为中央差速器。

差速器可分为普通差速器和两大类。 普通差速器的结构及工作原理 目前国产轿车及其它类汽车基本都采用了对称式锥齿轮普通差速器。 对称式锥齿轮差速器由行星齿轮、半轴齿轮、行星齿轮轴(十字轴或一根直销轴)和差速器壳等组成12-13(见图D-C5-6)。(从前向后看)左半差速器壳2和右半差速器壳8用螺栓固紧在一起。主减速器的从动齿轮7用螺栓(或)固定在差速器壳右半部8的上。十字形行星齿轮轴9安装在差速器壳接合面处所对出的园孔内,每个轴颈上套有一个带有滑动轴承(衬套)的直齿圆锥行星齿轮6,四个行星齿轮的左右两侧各与一个直齿圆锥半轴齿轮4相啮合。半轴齿轮的轴颈支承在差速器壳左右相应的孔中,其内花键与半轴相连。与差速器壳一起转动(公转)的行星齿轮拨动两侧的半轴齿轮转动,当两侧车轮所受阻力不同时,行星齿轮还要绕自身轴线转动--自转,实现对两侧车轮的差速驱动。

驱动桥认识

学习任务驱动桥认识 【任务描述】 本任务主要介绍驱动桥的作用、分类、组成和工作过程。 【学习目标】 通过本任务的学习,能够正确描述驱动桥的作用、分类、组成和工作过程。 【能力目标】 通过学习,结合实物,认识驱动桥。 任务工作单 1、写出下图中各部件的名称及作用。 2、观察下图所示为常用的齿轮型式。完成练习 (1)曲线齿锥齿轮的特点是主从动锥齿轮轴线(垂直、不垂直)且(相交、不相交)。 (2)准双曲面锥齿轮的特点是主从动锥齿轮轴线(垂直、不垂直)且(相交、不相交),有轴线(偏移、不偏移)。

主动和从动锥齿轮轴线位置 3、双级主减速器由一对齿轮和一对齿轮组成。 4、单级主减速器由一对齿轮组成。 5、驱动桥由、、和等组成。 6、主减速器的作是。 7、如下图所示,EQ1090E型汽车差速器的结构分解。 EQ1091型汽车差速器 从EQ1090E型汽车差速器的结构分解图分析:差速器的外壳分为部分;行星齿轮垫片有个,半轴齿轮垫片有个,行星齿轮轴是形状。主减速器从动齿轮和差速器壳通过连接起来。差速器轴承属于轴承。 8、结合桑塔纳轿车差速器的结构图指出该差速器和EQ1090E型汽车差速器结构的不同之处: (1)桑塔纳轿车差速器的壳体是式,半轴齿轮和行星齿轮的垫片是式,行星齿轮轴是式,行星齿轮有个。 (2)拆装过程和EQ1090E型汽车差速器结构不同之处: 1)不需要分解差速器外壳,原因是。 2)行星齿轮通过一字轴安装,故只有个行星齿轮。 3)由于差速器的垫片是式的,安装时比较方便。

桑塔纳轿车差速器 →→行星齿轮轴→齿轮→齿轮→半轴→车轮。 动力传递路线 11、在特殊性不是很大的路面,普通差速器无论是否工作,其转矩都可以视为平均分配。即:M左=M右= M壳体 12、公式:n1+n2=2n0 上式即为行星锥齿轮差速器的运动特性方程式。它表明差速器无论差速与否,都具有两半轴齿轮转速之和始终等于转速的两倍,而与行星齿轮自转速度无关的特性。 13、从下图中看出,半浮式半轴的受力情况为:既受负载,又受 转矩。

驱动桥的拆装实验报告

驱动桥的拆装 一、实训目的 1、掌握主减速器与差速器的功用、构造和工作原理 2、熟悉主减速器与差速器的拆装顺序,以及一些相关的检测与维修知识 二、实验原理 根据驱动桥的种类、结构特点、工作原理和组成部分,以及主减速器与差速器的结构特点、工作原理和组成部分,进行驱动桥总成的分拆装实训。 三、设备和实训用具 1、驱动桥总成1个(非断开式驱动桥) 2、工作台架1个 3、常用、专用工具全套 4、各式量具全套 四、实验步骤 1、用专用工具从驱动桥壳中拉下左、右两边 半轴主减速器 2、松下主减速器紧固螺栓,卸下主减速器总成 3、松开差速器支撑轴承的轴承盖紧固螺栓,卸下轴承盖,并做好记号 4、卸下支撑轴承,并做好标记,以及分解出差速器总成 5、从主减速器壳中,拉出主减速器双曲面主动齿轮(可视需要进行分拆装) 6、分解差速器总成,直接卸下一边半轴锥齿轮,接着卸下行星齿轮,以及另一边半轴锥齿轮 7、观察各零部件之间的结合关系,以及其工作原理

8、装配顺序与上述顺序相反

五、注意事项 1、拆卸差速器轴承盖时,应做好左、右两边轴承盖的相应标记 2、驱动桥为质量大部件,需小心操作,必要时用吊装,切忌勿站在吊装底下 3、严格按照技术要求及装配标记进行装合,防止破坏装配精度,如差速器及盖、调整垫片、传动轴等部位。行星齿轮止推垫片不得随意更换 4、差速器轴承的预紧度要按标准调整 5、差速器侧盖与变速器壳体的接合面装复时要涂密封 6、侧盖固定螺栓要按规定的扭矩拧紧 7、从动锥齿轮的固定螺栓应按规定的扭矩拧紧 &差速器轴承装配时可用压床压入 六、实验结果与分析 1、驱动桥的动力传递路线: 从万向传动轴到主减速器小齿轮,到从动锥齿轮,差速器壳T十字轴T行星齿轮T半轴齿轮T左右半轴。 2、主减速器、差速器等的支撑方式,及轴承预紧度调整: (1)主动锥齿轮与轴制成一体,主动轴前端支承在相互贴近而小端相向的两个圆锥滚子轴承上,后端支承在圆柱滚子轴承上,形成跨置式支承。其轴承预紧度可通过相对两个锥齿轮中加减垫片进行调整。 (2)从动锥齿轮连接在差速器壳上,而差速器壳则用两个圆锥滚子轴承支承在主减速器壳的座孔中。 (3)在从动锥齿轮背面,装有支承螺栓,以限制从动锥齿轮过度变形而影响齿轮的正常工作。装配时,一般支承螺栓与从动锥齿轮端面之间的间隙为0.3~0.5mm。 3、齿轮啮合间隙调整方法:

驱动桥设计

5.4 差速器的设计 汽车行驶时,左右车轮在同一时间内所滚过的路程往往不等。例如,转弯时内、外两侧车轮行程显然不同,即外侧车轮滚过的距离大于内侧车轮;汽车在不平路面上行驶时,由于路面波形不同也会造成两侧车轮滚过的路程不等;即使在平直路面上行驶,由于轮胎气压、轮胎负荷、胎面磨损程度不同以及制造误差等因素的影响,也会引起左右车轮因滚动半径不同而使左右车轮行程不等。如果驱动桥的左、右车轮刚性连接,则行驶时不可避免地会产生驱动轮在路面上滑移或滑转。这不仅会加剧轮胎磨损与功率和燃料的消耗,而且可能导致转向和操纵性恶化。为了防止这些现象的发生,汽车左右驱动轮间都装有轮间差速器,从而保证了驱动桥两侧车轮在行程不等时具有不同的旋转角速度,满足了汽车行驶运动学的要求;在多桥驱动汽车上还常装有轴间差速器,以提高通过性,同时避免在驱动桥间产生功率循环及由此引起的附加载荷,使传动系零件损坏、轮胎磨损和增加燃料消耗等。 差速器用来在两输出轴间分配转矩,并保证两输出轴有可能以不同的角速度转动。差速器按其结构特征不同,分为齿轮式、凸轮式、、蜗轮式和牙嵌自由轮式等多种形式。 5.4.1 差速器结构形式的选择 从经济性和平稳性考虑,后桥选用结构简单、紧凑、工作平稳,制造方便,用于公路汽车也很可靠地普通对称式圆锥行星齿轮差速器。 5.4.2 差速器齿轮主要参数选择 1.行星齿轮数目的选择 行星齿轮数目定为n=4 2.行星齿轮球面半径b R (mm )的确定 圆锥行星齿轮差速器的尺寸通常决定于行星齿轮背面的球面半径b R ,它就是行星齿轮的安装尺寸,实际上代替了差速器圆锥齿轮的节锥距,在一定程度上表征了差速器的强度。球面半径可根据经验公式来确定: 3d b b T K R = 式中:b K --------行星齿轮球面半径系数,b K =2.5~3.0,对于有四个行星齿轮的轿车和公路载货汽车取最小值, d T -----------计算转矩,Nm 所以:7.2=b R 6.967.458263=mm, 3.节锥距的确定mm A 7.940=mm R b 6.96= 4.行星齿轮齿数1Z 和半轴齿轮齿数2Z 的选择 为了得到较大的模数从而使齿轮有较高的强度,应使行星齿轮尽量少,但一般不小于10,半轴齿轮齿数采用14~25,后桥半轴齿轮与行星齿轮的齿数比多在 1.5~ 2.0范围内。在任何圆锥行星齿轮式差速器中,左右两半轴齿轮的齿数之

驱动桥的构造与维修

驱动桥的构造与维修 驱动桥的认知 一、驱动桥功用、组成和分类 1.驱动桥功用 驱动桥的位置如图5-1所 示,其功用是将由万向传 动装置传来的发动机转矩 传给驱动车轮,并经降速 增矩、改变动力传动方向, 使汽车行驶,而且允许左 右驱动车轮以不同的转速 旋转。 图5-1 驱动桥在汽车上的安装位置及组成 2.驱动桥的组成 驱动桥是一般由主减速器、差速器、半轴和桥壳等组成,如图5-2所示。驱动桥的主要零部件都在装在驱动桥的桥壳中。 图5-2 驱动桥的组成 ●3.驱动桥的分类 ●按照悬架结构的不同,驱动桥可以分为整体式驱动桥和断开式驱动桥,整体式驱动桥 又称为非断开式驱动桥。 ●整体式驱动桥与非独立悬架配用。其驱动桥壳为一刚性的整体,驱动桥两端通过悬架 与车架或车身连接,左右半轴始终在一条直线上,即左右驱动轮不能相互独立地跳动。 当某一侧车轮通过地面的凸出物或凹坑升高或下降时,整个驱动桥及车身都要随之发生倾斜,车身波动大。 ●断开式驱动桥与独立悬架配用。其主减速器固定在车架或车身上,驱动桥壳制成分段 并用铰链连接,半轴也分段并用万向节连接。驱动桥两端分别用悬架与车架或车身连接。这样,两侧驱动车轮及桥壳可以彼此独立地相对于车架或车身上下跳动。 ●二、驱动桥主要部件的构造 ●1.主减速器 ●(1)主减速器的功用。主减速器的功用是:将发动机转矩传给差速器;在动力的传动

过程中要将转矩增大并相应降低转速;对于纵置发动机,还要将转矩的旋转方向改变90°。 ●(2)主减速器的类型。按参加传动的齿轮副数目,可分为单级式主减速器和双级式主 减速器。有些重型汽车又将双级式主减速器的第二级圆柱齿轮传动设置在两侧驱动车轮附近,称为轮边减速器。 ●按主减速器传动比个数,可分为单速式和双速式主减速器。单速式的传动比是固定的, 而双速式则有两个传动比供驾驶人选择。 ●按齿轮副结构形式,可分为圆柱齿轮式(又可分为定轴轮系和行星轮系)主减速器和 圆锥齿轮式(又可分为螺旋锥齿轮式和准双曲面锥齿轮式)主减速器。 项目五驱动桥的构造与维修●(3)单级主减速器。单级主减速器结构简单,质量小,体积小,传动效率高,主要用 于轿车及中型以下客货车。 ●对于发动机纵向布置的汽车,由于需要改变动力传递方向,单级主减速器都采用一对 圆锥齿轮传动;对于发动机横向布置的汽车,单级主减速器采用一对圆柱齿轮即可。 ●桑塔纳2000轿车主减速器和差速器如图5-3所示,其传动比为4.444。由于发动机纵 向前置前轮驱动,整个传动系都集中布置在汽车前部,因此其主减速器装于变速器壳体,没有专门的主减速器壳体。由于省去了变速器到主减速器之间的万向传动装置,所以变速器输出轴即为主减速器主动轴。 图5-3 桑塔纳2000轿车主减速器和差速器 ●1)差速器的功用 ●差速器的功用是将主减速器传来的动力传给左、右两半轴,并在必要时允许左、右半 轴以不同转速旋转,使左、右驱动车轮相对地面纯滚动而不是滑动。 ●当汽车转弯行驶时,外两侧车轮 ●中心在同一时间移过的曲线距离 ●显然不同,即外侧车轮移过的距离 ●大于侧车轮,如图5-4所示。若

汽车构造下第十八章驱动桥

返回章目录->上一页| 下一页 一、驱动桥的组成、功用及结构类型 1.驱动桥的组成 驱动桥由主减速器、差速器、半轴、万向节、驱动桥壳(或变速器壳体)和驱动车轮等零部 件组成。

2.驱动桥的功用 1)通过主减速器齿轮的传动,降低转速,增大转矩; 2)主减速器采用锥齿轮传动,改变转矩的传递方向; 3)通过差速器可以使内外侧车轮以不同转速转动,适应汽车的转向要求; 4)通过桥壳和车轮,实现承载及传力作用。 返回章目录->上一页| 下一页 3.结构类型 1)非断开式驱动桥

当车轮采用非独立悬架时,驱动桥采用非断开式。其特点是半轴套管与主减速器壳刚性连成一体,整个驱动桥通过弹性悬架与车架相连,两侧车轮和半轴不能在横向平面内做相对运动。非断开式驱动桥也称 整体式驱动桥。

返回章目录->上一页| 下一页 2)断开式驱动桥 当驱动轮采用独立悬架时,两侧的驱动轮分别通过弹性悬架与车架相连,两车轮可彼此独立地相对于车架上下跳动。与此相对应,主减速器壳固定在车架上,半轴与传动轴通过万向节铰接,传动轴又通过万 向节与驱动轮铰接,这种驱动桥称为断开式驱动桥。

返回章目录->上一页| 下一页 第一节主减速器 一、主减速器的功用、结构型式和常用齿轮型式

1.主减速器的功用 1)降低转速,增大转矩; 2)改变转矩旋转方向; 2.结构型式 1)按参加减速传动的齿轮副数目分,有单级主减速器和双级主减速器; 2)按主减速器传动比档数分,有单速式和双速式; 3)按齿轮副结构形式分,有圆柱齿轮式、圆锥齿轮式和准双曲面齿轮式。 3.常用的齿轮型式 1)斜齿圆柱齿轮特点是主从动齿轮轴线平行。 2)曲线齿锥齿轮特点是主从动锥齿轮轴线垂直且相交。 3)准双曲面锥齿轮特点是主从动锥齿轮轴线垂直但不相交,有轴线偏移。

第18章 驱动桥

第18章驱动桥 学习目的: ·掌握驱动桥的功用、类型、组成 ·掌握主减速器的结构、类型 ·掌握单级主减速器的结构和工作原理 ·掌握双级主减速器的结构和工作原理 ·掌握差速器的组成、类型、结构特点和工作原理、分析其运动特性和转矩特性·掌握半轴和桥壳的构造和工作原理 第一节概述 一、组成与功用 组成:驱动桥是传动系的最后 一个总成。万向传动装置传来的动力 依次经主减速器、差速器和半轴最后 传给驱动轮。一般由主减速器、差速 器、半轴和桥壳等组成。 功用:1、进一步降速增矩。2、 改变动力传递方向。3、允许左右驱 动轮以不同的转速旋转。 二、结构类型 按结构不同,驱动桥分为整体式 驱动桥和断开式驱动桥两种。 整体式驱动桥(图18-1)采用非独 立悬架。其驱动桥壳为一刚性的整体,驱动桥两端通过悬架与车架连接,左右半轴始终在一条直线上,即左右驱动桥不能相互独立地跳动。当某一侧车轮因地面升高或下降时,整个驱动桥及车身都要随之发生倾斜。为提高车辆行驶的平顺性和通过性,轿车和越野采用独立悬架的断开式驱动桥。 断开式驱动桥(图18-2)采用独立悬架。其主减速器固定在车架上,驱动桥壳分段制成并用铰链连接,半轴也分段并用万向节连接。驱动器两端分别用悬架与车架连接。这样,两侧的驱动轮及桥壳可以彼此独立地相对于车架上下跳动。图18-1 1-后桥壳;2-差速器壳;3-差速器行星齿轮;4-差速器半轴齿轮;5-半轴;6-主减速器从动齿轮齿圈;7-主减速器主动小齿轮 图18-2 1-主减速器;2-半轴;3-弹性元件;4-减振器;5-车轮;6-摆臂;7-摆臂轴

发动机前置前轮驱动轿车的驱动桥,将变速器、主减速器和差速器均安装于一个三件组合的外壳(常称为变速器壳)之内。这样传动系的体积有效地减少,由于取消了贯穿前后的传动轴,简化结构,使轿车自重减轻。而且动力直接传给前轮,提高了传动效率。 第二节主减速器 功用:1、将输入的转矩增大并相应降低转速,2、当发动机纵置时改变转矩旋转方向。 类型:为满足不同的使用要求,主减速器的结构形式也是不同的。 按参加减速传动的齿轮副数目分,有单级式主减速器和双级式主减速器。在双级式主减速器中,若第二级减速器齿轮有两副,并分置于两侧车轮附近,实际上成为独立部件,此种称为轮边减速器。 按主减速器传动比挡数分,有单速式和双速式。前者的传动比是固定的。目前,国产汽车基本都采用单速式主减速器。后者有两个传动比供驾驶员选择,这种主减速器实际上又起到了副变速器的作用。可以适应不同行驶条件的需要。 按齿轮副结构 形式分,有圆柱齿 轮式,圆锥齿轮式 和准双曲面齿轮 式。 一、单级主减速器 目前,轿车和 一般轻、中型货车 均采用单级主减速 器,即可满足汽车 动力性的要求。它 具有结构简单、体 积小、质量轻和传 动效率高等优点。 图18-3 图18-4为轿 车单级主减速器。 P119为EQl090E型汽车主减速器,其减速传动机构为一对准双曲面齿轮18和7。主动齿轮有6个齿,从动齿轮有38个齿。为了使主动和从动齿轮之间啮合传动时冲击轻、噪声低,而且轮齿沿其长度方向磨损均匀,因此必须有正确的相对位置。为此,在结构上一方面要使主动和从动锥齿轮有足够的支承刚度,使其在传动过程中不至于发生较大变形而影响正常啮合;另一方面,应有必要的啮合调整装置。 1、支承刚度: 为保证主动锥齿轮有足够的支承刚度,主动锥齿轮与轴制一体,前端支承在互相贴近而小端相向的两个圆锥滚子轴承13和17上,后端支承在圆柱滚子轴承19上(图中未画出),形成跨置式支承。环状的从动锥齿轮7连接在主减速器壳4的座孔中。在从动锥齿轮的背面,装有支承螺栓6,以限制从动锥齿轮过度变形而影响齿轮的正常工作。装配时,支承螺栓与从动锥齿

车辆工程重卡贯通式驱动桥结构设计

摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。本文不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮,希望这能作为一个课题继续研究下去。 关键字:载重汽车驱动桥单级减速桥弧齿锥齿轮

Abstract Drive axle is the one of automobile four important assemblies.It` performance directly influence on the entire automobile,especially for the heavy truck .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today`heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck`developing tendency. This design following the traditional designing method of the drive axle. First ,make up the main parts`structure and the key designing parameters; thus reference to the similar driving axle structure ,decide the entire designing project ; fanially check the strength of the axle drive bevel pinion ,bevel gear wheel ,the differentional planetary pinion,differential side gear ,full-floating axle shaft and the banjo axle housing ,and the life expection of carrier bearing . The designing take the spiral bevel gear for the tradional hypoid gear ,as the gear type of heavy truck`s final drive,with the expection of the question being discussed,further . Key words:drive axle single reduction final drive the spiral bevel gear

外文翻译:重型汽车驱动桥的基本结构及发展趋势

附录1 重型汽车驱动桥的基本结构及发展趋势 1.重型汽车驱动桥的基本结构 驱动桥是重型汽车的重要标志之一,其基本结构有以下两种 1.1中央单级减速驱动桥 是驱动桥结构中最为简单的一种,是驱动桥的基本形式,在载重汽车中占主导地位。一般在主传动比小于6的情况下,应尽量采用中央单级减速驱动桥。目前的中央单级减速器趋于采用双曲线螺旋伞齿轮。主动小齿轮采用骑马式支承,有差速锁装置供选用。 1.2中央双级驱动桥 在国内目前的市场上,中央双级驱动桥主要有2种类型:一类如伊顿系列产品,事先就在单级减速器中预留好空间,当要求增大牵引力与速比时,可装人圆柱行星齿轮减速机构,将原中央单级改成中央双级驱动桥。这种改制“三化”程度高,桥壳、主减速器等均可通用,盆齿轮直径不变;另一类如洛克威尔系列产品,当要增大牵引力与速比时,需要改制第一级伞齿轮后,再装入第二级圆柱直齿轮或斜齿轮,变成要求的中央双级驱动桥这时桥壳可通用,主减速器不通用,盆齿轮有2个规格。 2009年中国汽车的产销量突破1000万辆,以惊人的速度迈进千万辆 级的汽车生产、消费大国行列。除了整车制造以外,汽车零部件领域的快速 发展也有目共睹。《2011中国汽车驱动桥市场趋势观察研究预测报告》分析:零部件行业销售和盈利环比继续改善,2009年9~11月税前利润环比 增长248%。2009年9-11月份,汽车零部件行业销售收入达3,413亿元, 同比上升499%,环比增长80%,销售收入自2季度反弹以来持续攀升, 国内汽车销量增长推动零部件配套收入上升是行业增长的主要来源。行业利 润总额达289亿元,同比上升1303%,环比增长248%,在行业销售收入增 长背景下,行业盈利也实现同比大幅上升。 。)工程自卸车、运水车等(的双级主减速器。后者更适宜于最大程度 地满足用户不同需要。而亚洲、非洲和南美国家则采用带轮边减速的双级主 减速器的驱动桥,用于非道路和恶劣道路使用的车辆)行星齿轮传动(带轮边 减速;《2011中国汽车驱动桥市场趋势观察研究预测报告》中数据表明:现在,世界上货车普遍采用两种驱动桥结构单级减速双曲线螺旋锥齿轮副本报告着重分析了2009-2010年中国汽车驱动桥行业和市场发展现状,行业发展趋势。依据对大量最新资讯的详尽分析,结合权威的观点,并 将近年来大量的连续监测数据运用数据模型分析,对2011-2015年中国汽 车驱动桥市场的发展做出科学的预测。 《2011中国汽车驱动桥市场趋势观察研究预测报告》2010年6月 版由郑林博士领衔撰写。在撰写过程中得到香港中华商业信息研究院的智 慧支持。并得到国家统计局,中国汽车工业协会,中国汽车用品网,汽车零

驱动桥的结构组成与主减速器教案设计

教学设计 题目:§1.6驱动桥的结构组成与主减速器教学目标: 知识点 ·驱动桥的结构类型及组成 ·主减速器的功用和结构 能力点 ·正确理解驱动桥的结构类型及组成(理解能力) ·正确识图、识件(识图、识件能力) ·正确分析主减速器结构及原理(分析能力)·正确绘制简图(绘图能力) 教学重点:·主减速器的功用和结构 教学难点:·主减速器的功用和结构 教学方法及手段:导入、重点介绍、简介、对比介绍、归纳小结、多媒体 教学过程:

由复习题问汽车传动系组成和动力传递路线导入本讲内容: 简单介绍: ·要求了解驱动桥的结构类型及基本组成·所有专业要求一致一、驱动桥的结构类型及组成 1.功用 ·驱动桥功用是将万向传动装置输入的动力经降速增矩、改变动力传递方向后,分配到左右驱动轮,使汽车行驶,并允许左右驱动轮以不同的转速旋转。 2.组成 ·驱动桥由主减速器、差速器、半轴和桥壳等组成 (1)主减速器:降速、增矩、变向 (2)差速器:使两侧驱动轮不等速旋转 (3)半轴:将扭矩从差速器传至驱动桥 (4)桥壳:安装基础,承重,且承力 3、驱动桥的类型 1)整体式驱动桥

·利用整体式驱动桥与断开式驱动桥的结构对比,分析它们的工作特点。·整体式驱动桥采用非独立悬架。其驱动桥壳为一刚性的整体,驱动桥两端通过悬架与车架连接,左右半轴始终在一条直线上,即左右驱动轮不能相互独立地跳动。当某一侧车轮通过地面的凸出物或凹坑升高或下降时,整个驱动桥及车身都要随之发生倾斜,车身波动大。 2)断开式驱动桥 ·断开式驱动桥采用独立悬架,如图16—2所示。其主减速器固定在车架上,驱动桥壳制成分段并用铰链连接,半轴也分段并用万向节连接。驱动桥两端分别用悬架与车架(或车身)连接。这样,两侧的驱动轮及桥壳可以彼此独立地相对于车架上下跳动。 重点介绍: ·要求学生理解掌握主减速器的类型结构与工作原理 简单介绍: ·主减速器的类型结构与工作原理二、主减速器 1、主减速器的功用、类型 (1)功用 ·主减速器的功用是将输入的转矩增大、转速降低,并将动力传递的方向改变后(有些横向布置发动机的除外)传给差速器。 2.类型 ·按参加传动的齿轮副数目,可分为单级式主减速器和双级式主减速器。有些重型汽车又将双级式主减速器的第二级圆柱齿轮传动装置设置在两侧驱动轮处,称为轮边减速器。 ·按主减速器传动速比个数,可分为单速和双速式主减速器。单速式的传动比是一定值,而双速式则有两个传动比(即两条传动路线)供驾驶员选择。·按齿轮副结构形式,可分为圆柱齿轮式(又可分为定轴轮系和行星轮系)主减速器和圆锥齿轮式(又可分为螺旋锥齿轮式和双曲面锥齿轮式)主减速器。 3、主减速器的构造与工作原理 (1)单级主减速器

后驱动桥

课程设计题目—轿车后驱动桥设计和研究是主要针对2007届车辆工程方向毕业生设置的。设置本选题有以下目的和意义: 1)通过进行轿车后驱动桥设计和研究,可以加深学生对汽车设计理论,汽车技术发展方向和汽车构造的理解;提高学生的总体素质,为进入社会后的工作奠定坚实的基础。 2)在进行产品设计时,需要学生参考原型车辆测绘、转配、设计、验证,通过这个过程,可以使学生了解研发流程,在进入工作岗位后很快适应研发工作。 3)本次设计用CAD软件作为成形和装配工具,通过学习二维虚拟设计,可以缩短设计周期,提高设计质量。提高我院学生运用二维设计软件工作的能力。 4)在进行性能研究时,需要掌握更深层的建模、计算、仿真分析的理论和工具,便于一部分有余力的同学水平更进一步。 二、毕业设计内容 本课题要求包括两个部分:1)各组成部分的理论研究、参数设计;2)各部件的机构设计,三维实体模型的建立,装配和干涉。具体要求: 1)能够完成汽车构造中各主要部件的参数化设计; 2)能完成底盘的结构设计和装配。 三、设计方法 本次设计的基本流程为:提出乘用车整体设计的目标要求:整车的动力性,制动性,平顺性要求,和整车的质量、装配要求。然后根据汽车设计的开发流程,实现总体和部件的设计。详细过程如下: 1)参数化设计:提出整体设计要求:质量、轴荷、乘员数、动力性、制动性、平顺性要求、确定发动机动力参数,确定变速器、主减速器等传动参数,制动和转向要求;确定各部件结构形式和基本参数。 2)计算机三维造型:根据理论计算的主要参数,对汽车构造各零件和总成进行三维造型和装配,要遵循三维造型的原则,注意造型细部规划,并按照软件设计小组的要求进行相关格式的转变。本步骤也是设计的关键步骤。

驱动桥-(3)

3.4 驱动车轮的传动装置设计 驱动车轮的传动装置位于汽车传动系的末端,其功用是将转矩由差速器半轴齿轮传给驱动车轮。在断开式驱动桥和转向驱动桥中,驱动车轮的传动装置包括半轴和万向节传动装置且多采用等速万向节。在一般非断开式驱动桥上,驱动车轮的传动装置就是半轴,这时半轴将差速器半轴齿轮与轮毂连接起来。在装有轮边减速器的驱动桥上,半轴将半轴齿轮与轮边减速器的主动齿轮连接起来。 3.4.1 半轴的型式 普通非断开式驱动桥的半轴,根据其外端的支承型式或受力状况的不同而分为半浮式、3/4浮式和全浮式三种。 半浮式半轴以靠近外端的轴颈直接支承在置于桥壳外端内孔中的轴承上,而端部则以具有锥面的轴颈及键与车轮轮毂相固定,或以突缘直接与车轮轮盘及制动鼓相联接)。因此,半浮式半轴除传递转矩外,还要承受车轮传来的弯矩。由此可见,半浮式半轴承受的载荷复杂,但它具有结构简单、质量小、尺寸紧凑、造价低廉等优点。用于质量较小、使用条件较好、承载负荷也不大的轿车和轻型载货汽车。 3/4浮式半轴的结构特点是半轴外端仅有一个轴承并装在驱动桥壳半轴套管的端部,直接支承着车轮轮毂,而半轴则以其端部与轮毂相固定。由于一个轴承的支承刚度较差,因此这种半轴除承受全部转矩外,弯矩得由半轴及半轴套管共同承受,即3/4浮式半轴还得承受部分弯矩,后者的比例大小依轴承的结构型式及其支承刚度、半轴的刚度等因素决定。侧向力引起的弯矩使轴承有歪斜的趋势,这将急剧降低轴承的寿命。可用于轿车和轻型载货汽车,但未得到推广。 全浮式半轴的外端与轮毂相联,而轮毂又由一对轴承支承于桥壳的半轴套管上。多采用一对圆锥滚子轴承支承轮毂,且两轴承的圆锥滚子小端应相向安装并有一定的预紧,调好后由锁紧螺母予以锁紧,很少采用球轴承的结构方案。 由于车轮所承受的垂向力、纵向力和侧向力以及由它们引起的弯矩都经过轮毂、轮毂轴承传给桥壳,故全浮式半轴在理论上只承受转矩而不承受弯矩。但在实际工作中由于加工和装配精度的影响及桥壳与轴承支承刚度的不足等原因,仍可能使全浮式半轴在实际使用条件下承受一定的弯矩,弯曲应力约为5~70MPa 。具有全浮式半轴的驱动桥的外端结构较复杂,需采用形状复杂且质量及尺寸都较大的轮毂,制造成本较高,故轿车及其他小型汽车不采用这种结构。但由于其工作可靠,故广泛用于轻型以上的各类汽车上。 3.4.2 半轴的设计与计算 半轴的主要尺寸是它的直径,设计与计算时首先应合理地确定其计算载荷。 半轴的计算应考虑到以下三种可能的载荷工况: (1)纵向力X 2最大时(X 2=Z 2?),附着系数尹取0.8,没有侧向力作用; (2)侧向力Y 2最大时,其最大值发生于侧滑时,为Z 21?中,,侧滑时轮胎与地面的侧 向附着系数1?,在计算中取1.0,没有纵向力作用; (3)垂向力Z 2最大时,这发生在汽车以可能的高速通过不平路面时,其值为(Z 2-g w )k d ,k d 是动载荷系数,这时没有纵向力和侧向力的作用。 由于车轮承受的纵向力、侧向力值的大小受车轮与地面最大附着力的限制,即 2 2222Y X Z +=?

汽车驱动桥必参考知识分解

了解轮胎尺寸 常见的标准轮胎尺寸有以下二种: 1. 315/80R2 2.5 2. 10.00R20 更多详细内容如图所示: 举例1: 315/80R22.5 A轮胎名义断面宽度(mm) B名义高宽比 C子午线结构代号 D轮辋名义直径(in) E154/150M 154: 负荷指数(单胎) 150: 负荷指数(双胎) M : 速度级别 下表给出了负荷指数与速度级别所对应的值F层级 G无内胎轮胎 H可刻沟标识 I花纹名称 J带束层缠绕方向K轮胎滚动方向 举例2: 10.00R20

A轮胎名义断面宽度(in) B结构代号。“-”为斜交结构代号,“R”为子午结构代号 C轮辋名义直径(in) D154/150M 154: 负荷指数(单胎) 150: 负荷指数(双胎) M : 速度级别 下表给出了负荷指数与速度级别所对应的值E层级 F无内胎轮胎 G可刻沟标识 H花纹名称 I带束层缠绕方向J轮胎滚动方向

轮胎外形尺寸 S: 标准轮辋上测量的截面宽度 H: 截面高度 R: 自由半径 R’:负载半径 E: 双胎间距 D: 自由直径(R x 2) ?:轮辋直径

如一条轮胎的规格为205/55/R16 91V 205——指的是轮胎宽度为205 mm。 55——指的是轮胎扁平比,即断面高度是宽度的55%。 R——指的是该轮胎为子午胎(这条胎内层为辐射胎制造方式) 16——指的是轮辋直径是16英寸。 91——指的是负荷指数91,代表这条轮胎最大可承重615公斤,四条轮胎就是 615×4=2460公斤。 V—指的是速度级别为240公里/小时。 附: 1.轮胎载重指数:82-475,83-487 ,84-500,85-515,86-530,87-545,88-560,89-580 , 90-600, 91-615, 92-630, 93-650, 94-670太多了,就不一一列举,最大108-1000 2.轮胎安全速度记号表___(代码VS.安全速限) F 80公里/小时 G 90公里/小时J 100公里/小时 K 110公里/小时L 120公里/小时M 130公里/小时 N 140公里/小时P 150公里/小时Q 160公里/小时 R 170公里/小时S 180公里/小时T 190公里/小时 U 200公里/小时H 210公里/小时V 240公里/小时 ZR 240公里/小时以上

汽车驱动桥的详细结构与分类

驱动桥的详细结构及分类 我爱车网类型:来源:腾讯汽车时间:2011-03-02 作者: 驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 (1)非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 整体式驱动桥即非断开式驱动桥组成 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

四驱越野车转向驱动桥的毕业设计

摘要 随着汽车工业的发展和汽车技术的提高,驱动桥的设计和制造工艺都在日益完善。驱动桥和其他汽车总成一样,除了广泛采用新技术外,在结构设计中日益朝着“零件标准化、部件通用化、产品系列化”的方向发展及生产组织专业化目标前进。应采用能以几种典型的零部件,以不同方案组合的设计方法和生产方式达到驱动桥产品的系列化或变形的目的,或力求做到将某一类型的驱动桥以更多或增减不多的零件,用到不同的性能、不同吨位、不同用途并由单桥驱动到多桥驱动的许多变形汽车上。 本说明书中,根据给定的参数,首先对主减速器进行设计。主要是对主减速器的结构,以及几何尺寸进行了设计。主减速器的形式主要有单级主减速器和双级主减速器。而主减速器的齿轮形式主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。本次设计采用的是整体式单级主减速器,齿轮形式采用双曲面齿轮。其次,对差速器的形式进行选择,差速器的形式主要分为普通对称式圆锥行星齿轮差速器和防滑差速器两种。本次设计采用普通对称式圆锥行星齿轮差速器。最后,对半轴的结构、支承形式,以及桥壳的形式和特点进行了分析设计。本次设计采用全浮式半轴支承和整体式驱动桥壳。 关键词:驱动桥主减速器差速器半轴驱动桥壳

ABSTRACT With the development of the automotive industry and vehicle technology to improve the design and manufacturing process of the drive axle are increasingly improved. Drive Axle and other automotive assembly, in addition to the widespread adoption of new technology in the structural design, the direction of development and production organizations increasingly toward "standardization of parts, components universal product series" professional goal. Parts should be used in several typical drive axle product series or deformation of the purpose of portfolio design and production methods, or that we could achieve a certain type of drive axle to more or deletion few parts, used different performance, many of the different tonnage, different purposes by a single bridge driver to multi-bridge-driven deformation of the car. This manual, according to the given parameters, the first main gear box design. The structure of the main gear box, and the geometric dimensions of the design. The main gear box in the form of single-stage main gear box and two-stage main gear box. Final drive gear mainly in the form of spiral bevel gears, hypoid gears, cylindrical gears, worm and other forms. This design is integral single-stage main gear box, gear forms of hypoid gears. Secondly, in the form of differential selection, differential forms are divided into ordinary symmetric cone planetary gear differential and limited slip differential two. The design uses a common symmetric cone planetary gear differential. Finally, on the structure of the axle, supporting forms, and the axle housing forms and characteristics of the analysis and design. The design uses a full floating axle shaft bearing and the overall drive axle housing. Keywords:Drive axle Main reducer Differential Axle Drive Axle Housing

相关主题