当前位置:文档之家› 第八章 平面问题的复变函数解答

第八章 平面问题的复变函数解答

第八章 平面问题的复变函数解答

复变函数与积分变换问题详解(马柏林、李丹横、晏华辉)修订版,习题2

习题二 1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44 u iv x y +=+ 所以 54u x = ,34 v y =+ 5344 ,u v x y == 所以()()2 253442u v +=即()()222253221u v +=,表示椭圆. 2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ?ρ=或i w u v =+. (1)π02,4 r θ<<= ; (2)π02,04r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+ 所以22,2.u x y v xy =-= (1) 记e i w ?ρ=,则π02,4 r θ<<=映射成w 平面虚轴上从O 到4i 的一段,即 π04,.2 ρ?<<= (2) 记e i w ?ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2 ρ?<<<<

(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,口向左的抛物线将y =b 映成了22,2.u x b v xb =-= 即2224()v b b u =+是以原点为焦点,口向右抛物线如图所示 . 3. 求下列极限. (1) 2 1lim 1z z →∞+; 解:令1z t =,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z =x +y i ,则Re()i z x z x y =+有 000 Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()() 2z i z i z i z i z z i z i z →→-==-+-+.

波动方程的简谐平面波解

波动方程的简谐平面波解 在建立了波动方程之后,我们来讨论其解的形式及其特性。 1、 简谐平面波 (1)波动方程的简谐平面波解 声波在空间中传播,其传播方向和波阵面垂直。平面波是波阵面是平面的声波,而简谐平面波是波阵面(对简谐波而言,波阵面也是等相位面)是平面的简谐声波。具有任意波形的声波可以通过付里叶变换分解为多个具有不同频率的简谐平面波的叠加。因此,简谐波传播是波动传播的基础。 一般简谐平面波的声压幅值在等相面上有一定的分布。这里只讨论声压幅值在等相面上处处相同(均匀平面波)的简单情况,较为复杂的非等声压幅值平面波(非均匀平面波)在后面的学习中会遇到。 对一维均匀简谐平面波,声压幅值可以只用一个坐标来描述。若取平面波的传播方向为x 轴正方向,假设波动方程中c 为常数,则波动方程的均匀简谐平面波解可以分离变量有如下形式: (,)()()p x t p x T t =, (2-23) 其中,()p x 和()T t 分别为(,)p x t 的空间坐标相关因子和时间相关因子。将(2-23)式代入到 (2-15)中,并分离变量,得 222222 1()() ()()d T t c d p x T t dt p x dt ω==-, (2-24) 其中,2ω-为分离常数。由(2-24)式可得两个方程: 22 2 ()()0d T t T t dt ω+=, (2-25) 222 () ()0d p x k p x dt +=。 (2-26) 其中,222k c ω=,为常数。 (2-25)式的两个特解为j t e ω和()j t e ω-,后者描述具有“负频率”的振动,无实际意义,只保留j t e ω;(2-26) 式的两个特解为jkx e 和jkx e -。由此得到波动方程的简谐平面波解为 j[t-kx] j[t+kx] (,)(,)(,) =Ae e p x t p x t p x t B ωω+-=++ 。 (2-27) 对推导过程中几个量物理意义的讨论: ① 由(2-25)的解j t e ω可以看出,ω是简谐波的圆频率,也可以理解为:在简谐波

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

麦克斯韦方程组的平面波解

【麦克斯韦方程组的平面波解】 令0ρ=,0J = ,可得自由空间(真空)中的Maxwell 方程组 0,E ??= (1) 0,B ??= (2) ,B E t ???=-? (3) 00,E B t με???=? (4) 其中真空介电常数(Permittivity constant )1208.8510F m ε-=?,真空磁导率(Permeability constant )60 1.2610H m μ-=?由实验测定。按照现行计量方案,确保光在真空中的传播速度 299 792 458 m/s.c = = 利用矢量分析公式 ()() 2 ,A A A ????=???-? 可以推导出电磁场的波动方程 2222 2222 01100.E B E B c t c t ???-=?-=?? , (5) 这是6个独立的线性齐次微分方程;即电场强度矢量E 或磁感应强度矢量B 的任意分量都 满足微分方程 22222222210.A A A A x y z c t ????++-=???? 若以平面电磁波传播方向为x 轴,波阵面平行于yz 平面,则场分量(,)A A x t =与位置坐标y 和z 无关,并满足如下简单微分方程 2222210,A A x c t ??-=?? (6) 作为练习,读者可以证明任何形如 (,)(),A x t A t kx ω=- 的函数都是波动方程(6)的解,只要其中的参数ω和k 满足

.c k ω =± 显然,简谐平面波 ()0(,),i t kx A x t A e ω-= (7) 是波动方程(6)的特殊解,其中2ωπ=和2k π λ=分别是简谐平面波的园频率和波矢量。 值得指出的是,电场强度矢量E 或磁感应强度矢量B 的6个分量必须同时满足Maxwell 方程组(1.15-18)四个微分方程。这就要求简谐平面波 ()() 00(,),(,)i t k r i t k r E r t E e B r t B e ωω-?-?== , 还必须满足一些附加条件,即 000000000,0,,,k E k B k E B k B E ωμεω?=?=?=?=- (8) 从而自由空间中沿x 轴正方向传播的简谐平面电磁波可以写作 ()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω--==e e , (9) 并且 0.E B c = (10) 类似地,沿x 轴负方向传播的简谐平面电磁波可以写作 ()()00(,),(,)i t kx i t kx y z E x t E e B x t B e ωω++==-e e . 简谐平面电磁波具有显著的横波特性,即 () 0.k E B ??=

第二章平面问题的复变函数解法-2009分析

第二章 平面裂纹问题的复变函数解法 第1节 绪论 如果二元实变函数()y x U ,在区域D 内具有二阶连续偏导数并且满足拉普拉斯(Laplace )方程 02=?U ???? ????+??=?22222 y x 则称()y x U ,为区域D 内的调和函数。 弹性力学的分析表明, 平面问题可以归结为求解满足双调和方程022=??U 的应力函数U ,并使其在边界上满足全部边界条件。双调和方程022=??U 的解U 为双调和函数。 在数学中,复变解析函数的实部和虚部均为调和函数(满足02=?U )。而利用复变解析函数来讨论含孔、裂纹等结构的平面问题比较方便。 1.复变函数的基础知识 复数 a i b + 1-=i 为虚单位 复变数(量) iy x z += 实变数x 和y 分别称为复变数z 的实部和虚部, 记为:z x Re =,z y Im = 则有: z i z z Im Re += (2-1-1) z 的极坐标形式为

()θθsin cos i r z +=θi re = z 的共轭复数 ()θθθi re i r iy x z -=-=-=sin cos 复变函数 以复变量iy x z +=为自变量的函数, 称为复变函数。复变函数也可以看成是由它的实部f Re 和虚部f Im 所组成,有: ()Re Im f z f i f p iq =+=+ ()iq p f i f z f -=-=Im Re (2-1-2) 例如 ()()22222y ixy x iy x z z f -+=+== 则有 22Re y x f p -==,xy f q 2Im == 几何上,可以将函数()z f 看成复数平面z 上的点),(y x 到另一复数平面W 上的点),(q p 的变换, 变换关系如图2-1-1所示。 p (p,q) q W 0 0y z (x,y) 图2-1-1 复数平面变换图 复变函数的导数 设复变函数)(z f 在某一点的领域内有定义,取z ?为复值增量,若 ()()z z f z z f Lim z ?-?+→?0 (2-1-3) 极限存在,则)(z f 在点z 处可导,并记为()z f ',即()z f '为)(z f 在点z 处的导数。

复变函数疑难问题分析

复变函数疑难问题分析 1. 设z z z f 1sin )(2=,{}11|<-=z z D 。 1)函数)(z f 在区域D 中是否有无限个零点?2) 若上小题的答案是肯定的,是否与解析函数零点的孤立性相矛盾?为什么? 答: 有无限个零点。可以具体写出其所以零点; 不矛盾。因为这无限多个零点均为孤立零点;不可以展开为洛朗级数。因为0=z 为非孤立的奇点。 2. “函数sin z 在z 平面上是有界的”是否正确? sin z 在z 平面上无界。 这是因为sin 2iz iz e e z i --=,令(0)z iy y =<,则|sin |||()2iz iz e e z y i --=→∞→-∞ 3. “函数z e 为周期函数” 是否正确? z e 是以2k i π为周期的函数。因为z C ?∈,221z k i z k i z z e e e e e ππ+==?=,k 为整数 4. “()f z z =是解析函数” 是否正确? ()f z z =在z 平面上不解析。因为()f z z x iy ==-,所以(,)u x y x =,(,)v x y y =- 所以1u x ?=?,1v y ?=-?,0u y ?=?,0v x ?=? 但是 11u v x y ??=≠-=??,所以(,)u x y ,(,)v x y 在z 平面上处处不满足..C R -条件 所以()f z z =在z 平面上不解析。 5.根据教材中建立起球面上的点(不包括北极点N )复平面上的点间的一一对应,试求解下列问题。

(1 )复球面上与点1)对应的复数; (2)复数1+i 与复球面上的那个点; (3)简要说明如何定义扩充复平面。 解:(1)建立空间直角坐标系(以O 点为原点,SON 为z 轴正半轴),则过 点,,1)22P 与点(0,0,2)N 的直线方程 为21z -==-。当0z =时 ,x y == ,所以,,1)22 对应。 (2)复数1i +的空间坐标为(1,1,0)。则直线方程2112 x y z -==-与球面222(1)1x y z ++-=相交,其交点为222(,,)333 ,(0,0,2)N (3)z 平面上以个模为无穷大的假想点一北极N 相对应,复平面上加上∞后称为扩充复平面。 6.说明复变函数可微性与解析性的关系。 复变函数()w f z =在点0z 处可导,又称为可微,而()f z 在0z 处的某个邻域内任一点处均可导(可微),则称()f z 在0z 处是解析的。 所以(1)()w f z =在点0z 处可导(可微),但不一定在0z 处是解析的, (2)()f z 在0z 处解析是指在0z 处的某个邻域内任一点处均可导, (3)()f z 在区域D 内可微与在区域D 内解析是等价的。 7.()1sin f z z =在区域D :01z <<上解析且有无穷多个零点,但在区域D 上()f z 不恒等于零,这与解析函数零点孤立性定理相矛盾吗?为什么? 1()sin f z z =在区域D ,01z <<内有无穷多个零点1k z k π =,但lim 0k k z →∞=,但0D ?,而区域D 是去心邻域,()f z 在0z =点无意义,所以()f z 在0z =处是

第一章-复数与复变函数

复变函数教案 2012—2013学年度第二学期 任课教师郭城 课程名称复变函数 采用教材高教三版(钟玉泉编) 周课时数 4 数统学院数学教育专业2010 年级1班

引言 数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。 我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac

大学物理平面简谐波波动方程

§4-2平面简谐波的波动方程 振动与波动 最简单而又最基本的波动是简谐波! 简谐波:波源以及介质中各质点的振动都是简谐振动。任何复杂的波都可看成是若干个简谐波的叠加。 对平面简谐波,各质点都在各自的平衡位置附近作简谐振动,但同一时刻各质点的振动状态不同。需要定量地描述出每个质点的振动状态。 波线是一组垂直于波面的平行射线,可选用其中一根波线为代表来研究平面简谐波的传播规律。 一、平面简谐波的波动方程 设平面简谐波在介质中沿 x 轴正向传播,在此波线上任取一参考点为坐标原点 参考点原点的振动方程为 x 区别 联系 振动研究一个质点的运动。 波动研究大量有联系的质点振动的集体表现。 振动是波动的根源。 波动是振动的传播。

()00cos y A t ω?=+ 任取一点 P ,其坐标为 x ,P 点如何振动? A 和 ω 与原点的振动相同,相位呢? 沿着波的传播方向,各质点的相位依次落后,波每向前传播 λ 的距离,相位落后 2π 现在,O 点的振动要传到 P 点,需要向前传播的距离为 x ,因而 P 点的相位比 O 点落后 22x x π πλ λ = P 点的振动方程为 02cos P y A t x πω?λ? ?=+- ?? ? 由于 P 点的任意性,上式给出了任意时刻任意位置的质点的振动情况,将下标去掉 02cos y A t x πω?λ? ?=+- ?? ? 就是沿 x 轴正向传播的平面简谐波的波动方程。 如果波沿 x 轴的负向传播,P 点的相位将比 O 点的振动相位超前2x π λ 沿 x 轴负向传播的波动方程为 x

02cos y A t x πω?λ??=++ ??? 利用 2ωπν=, u λν= 沿 x 轴正向传播的平面简谐波的波动方程又可写为 02cos y A t x πω?λ??=-+ ??? 02cos A t x u πνω??? =-+ ??? 0cos x A t u ω??? ??=-+ ??????? 即 0cos x y A t u ω??? ??=-+ ??????? 原点的振动状态传到 P 点所需要的时间 x t u ?= P 点在 t 时刻重复原点在 x t u ?? - ??? 时刻的振动状态 波动方程也常写为 02cos y A t x πω?λ??=-+ ??? ()0cos A t kx ω?=-+ 其中 2k π λ = 波数,物理意义为 2π 长度所具有完整波的数目。 ☆ 波动方程的三个要素:参考点,参考点振动方程,传播方向 二、波动方程的物理意义 1、固定x ,如令0x x = ()002cos y t A t x πω?λ? ?=+- ?? ? 振动方程

复变函数科普知识

复变函数科普知识 1.简介复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现 了负数开平方的情况。在复变函数 复变函数很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 2.历史复变函数 复变函数复变函数论产生于十八世纪。1774年,欧拉在他 的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为

复变函数

复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,近年来这方面的理论发展十分迅速。 从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。现在,复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。 [编辑本段] 内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和 复变函数说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在离曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使人们把比较深奥的函数的解析性质和几何联系起来。、关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。 复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也

波动方程或称波方程

波动方程或称波方程(英语:wave equation)是一种重要的偏微分方程,主要描述自然界中的各种的波动现象,包括横波和纵波,例如声波、光波、无线电波和水波。波动方程抽象自声学、物理光学、电磁学、电动力学、流体力学等领域。 历史上许多科学家,如达朗贝尔、欧拉、丹尼尔·伯努利和拉格朗日等在研究乐器等物体中的弦振动问题时,都对波动方程理论作出过重要贡献。 波动方程是双曲形偏微分方程的最典型代表,其最简形式可表示为:关于位置x 和时间t的标量函数u(代表各点偏离平衡位置的距离)满足: 这里c通常是一个固定常数,代表波的传播速率。在常压、20°C的空气中c为343米/秒(参见音速)。在弦振动问题中,c依不同弦的密度大小和轴向张力不同可能相差非常大。而在半环螺旋弹簧(一种玩具,英文商标为 Slinky)上,波速可以慢到1米/秒。 在针对实际问题的波动方程中,一般都将波速表示成可随波的频率变化的量,这种处理对应真实物理世界中的色散现象。此时,c应该用波的相速度代替: 实际问题中对标准波动方程的另一修正是考虑波速随振幅的变化,修正后的方程变成下面的非线性波动方程: 另需注意的是物体中的波可能是叠加在其他运动(譬如介质的平动,以气流中传播的声波为例)上的。这种情况下,标量u的表达式将包含一个马赫因子(对沿流动方向传播的波为正,对反射波为负)。 三维波动方程描述了波在均匀各向同性弹性体中的传播。绝大多数固体都是弹性体,所以波动方程对地球内部的地震波和用于检测固体材料中缺陷的超声波的传播能给出满意的描述。在只考虑线性行为时,三维波动方程的形式比前面更为复杂,它必须同时考虑固体中的纵波和横波: 式中:

第8章 平问题的复变函数解

第八章平面问题的复变函数解知识点 双调和方程的复变函数表达形式应力分量复变函数表达式 应力分量的单值条件 多连域的K-M函数 无穷远应力与K-M函数 位移分量的曲线坐标表达 保角变换公式与K-M 函数 柯西积分确定K-M 函数 孔口应力 裂纹前缘应力分布双调和函数的复变函数形式 位移分量的复变函数表达形式 位移分量的单值条件 无限大多连域中K-M函数的一般形式保角变换和曲线坐标 应力分量的曲线坐标表达式 利用孔口边界条件确定K-M 函数 椭圆孔口的保角变换 裂纹—短轴为零的椭圆 切应力作用的裂纹前缘应力 一、内容介绍 通过直角坐标和极坐标系,可以求解一些弹性力学平面问题。但是,这些方法只能用于某些边界比较特殊的平面问题,特别是对于多连域问题更显得无能为力。 本章介绍复变函数解法,实质仍然是在给定的边界条件下求解双调和方程的问题,但应用中成为在给定的边界条件下寻找两个解析函数K-M函数的问题。求解分析步骤为: 1、分别将应力函数、应力分量、位移和边界条件等表示为复变函数形式,就是用K-M 函数表示; 2、探讨无限大多连域中,K-M函数的表达形式,将其表示为级数形式; 3、利用保角变换将无限大多连域映射为单位圆,使得问题的边界条件简化; 4、将边界条件转化为柯西积分,求解级数系数,从而使得问题求解。 如果你还没有学习复变函数课程,请你学习附录2或者查阅有关参考资料。 二、重点 1、K-M函数与应力函数、应力分量、位移和边界条件等; 2、无限大多 连域的K-M函数形式;3、保角变换与曲线坐标;4、椭圆孔口与平面裂纹问题。 §8. 1 应力函数的复变函数表示

学习思路: 弹性力学应力解法的基本方程是双调和方程,问题求解的关键是建立满足边界条件的双调和函数。对于复变函数解,重要的问题是将双调和函数表达为复变函数形式。 本节首先将双调和方程表示为复变函数形式;然后通过积分用解析函数表示双调和函数。学习时应该注意:应力函数为实函数,通过复变函数表达的双调和函数也是实函数,因此应力函数虚部等于零。 上述分析的结果是使得应力函数通过两个单值解析函数和ψ(z)表示。 和ψ(z)称为克罗索夫-穆斯赫利什维利函数,简称K-M函数;或者称为复位势函数。 学习要点: 1、双调和方程的复变函数表达形式; 2、双调和函数的复变函数形式 1、双调和方程的复变函数表达形式 在弹性力学的复变函数求解中,应力函数用U(x,y)表示,有其它定义。 设应力函数U(x,y)为双调和函数,首先考虑变形协调方程的复变函数表达形式。 对于复变函数z =x+ i y,取其共轭,则=x- i y。因此z和均为x,y的函数。复变函数z可以写作z=ρ e i?,其共轭=ρ e-i?,因此z和又可以表示为坐标ρ 和?的函数。 同理,x,y也可以表示为z和的函数,有 因此,应力函数也可以表示为复变函数z和的函数,有 注意到

复变函数的应用.docx

复变函数的应用 数学与应用数学班 数学是一门很抽象的学科,而复变函数更是如此,如果直接想象很难和实际 联系起来。经过两年的大学学习就目前学习的知识而言,感觉和复变函数联系比 较紧密的是有两方面,一是电流方面;二是在信号方面。 我们日常中的电流都是交流三相的,而相位如果通过三角函数计算的话较为复 杂和抽象,很多工程问题无法解决,引入虚数则较大简化了计算的过程,是很多 工程问题迎刃而解。可以通过 RCL 电路我们也用虚数去处理相角关系,但电感本身 并不是虚的。这是人为的定义,但这也在一定意义上揭示了虚数有可能存在的某些物理特征。成功而且巧妙的解决了电流的相位问题。 我们打电话,发短信是通过电磁波传递信号,在信号方面也极大的应用了复 变函数。信号分析和其他领域使用复数可以方便的表示周期信号。模值 |z|表示信号 的幅度,辐角 arg(z)表示给定频率的正弦波的相位。利用傅立叶变换可将实信号表 示成一系列周期函数的和。这些周期函数通常用形式如下的复函数的实部表示:其 中ω对应角频率,复数z 包含了幅度和相位的信息。于是当我们要的信息得以传递。 所以,不管是我们使用家用电器,用手机问候远方的朋友,还是使用卫星电 视观看电视剧,我们无时无刻不在接触着这位很抽象而无处不在的朋友——复变函数。 一、复变函数的简介 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数 开平方的情况 ,它的一般形式是: a bi ,其中 i 是虚数单位。 多复分析是数学中研究多个复变量的全纯函数的性质和结构的分支学科,它和单 复变函数有着很强的渊源,但其特有的困难和复杂性,导致在研究的重点和方法上,都和单复变函数论有明显的区别 .因为多复变全纯函数的性质在很大程度上由定义区 域的几何和拓扑性质所制约,因此,其研究的重点经历了一个由局部性质到整体性 质的逐步的转移 .它广泛地使用着微分几何学、代数几何、拓扑学、微分方程等相邻 学科中的概念和方法,不断地开辟前进的道路,更新和拓展研究的内容和领域。 就像微积分的直接扩展统治了十八世纪的数学那样,复变函数论的全面发展是 在十九世纪,这个新的分支统治了十九世纪的数学 .当时的数学家公认复变函数论 是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学 中最和谐的理论之一 .为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔, 法国的 Laplace 也随后研究过复变函数的积分,他们都是创建这门学科的先 驱 .。 二、复变函数的应用 近代有些函数论研究工作是考虑把具有某种性质的一族函数合在一起研究。事 实上, P·蒙泰尔的解析函数正规族就应属于这种类型的研究,并且显示了其威 力 .从这种观点出发的研究有了很大发展 .它与其他数学分支产生了较密切的联 系 . 复变函数理论从一个变数推广到多个变数是十分自然的想法,总称为复分析 . 但是多变数时,定义域的复杂性大大增加了,函数的性质较之单变数时也有显著的差异,它的研究需要借助更多的近代数学工具 .。

复变函数习题解答(第4章)

p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ] 3. 如果lim n (c n + 1/c n )存在( ),试证下列三个幂级数有相同的收敛半径: (1) n 0 c n z n ;(2) n 0 (c n /(n + 1)) z n + 1;(3) n 0 (n c n ) z n – 1. 【解】事实上,我们只要证明下面的命题: 若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . 从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同. step 1. 当R 是正实数或+时.若| z | < R ,则存在r 使得| z | < r < R . 因 n 0 c n z n 的收敛半径为R ,根据收敛半径定义及Abel 定理, 知 n 0 | c n r n |收敛. 因| (n c n ) z n – 1 | = ( | n /r | · ( | z | /r )n – 1 ) · | c n r n |; 而lim n ( | n /r | · ( | z | /r )n – 1 ) = 0,故M > 0使得0 | n /r | · ( | z | /r )n – 1 M . 所以| (n c n ) z n – 1 | M · | c n r n |. 由Weierstrass 判别法知 n 0 | (n c n ) z n – 1 |收敛,所以 n 0 (n c n ) z n – 1收敛. 因此 n 0 (n c n ) z n – 1的收敛半径R 1 R . 特别地,若 n 0 c n z n 的收敛半径为+,则 n 0 (n c n ) z n – 1的收敛半径也为 +. step 2. 当R 是非负实数时.对任意的满足R < r < | z |的实数r , 根据收敛半径定义, n 0 c n r n 发散.从而 n 0 | c n r n |发散. 当n > r + 1时,| c n r n | = | r /n | · | (n c n ) r n – 1 | | (n c n ) r n – 1 |; 因此, n 0 | (n c n ) r n – 1 |发散. 由Abel 定理, n 0 (n c n ) z n – 1的收敛半径R 1 r . 由r 的任意性,得R 1 R . 特别地,若 n 0 c n z n 的收敛半径为0,则 n 0 (n c n ) z n – 1的收敛半径也为0. step 3. 综合step 1和step 2的结论,当R 为正实数时,也有R 1 = R . 即若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . [这个证明中,我们没有用到条件lim n (c n + 1/c n )存在( ),说明该条件是 可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.] 4. 设 n 0 c n z n 的收敛半径为R (0 < R < +),并且在收敛圆周上一点绝对收 敛,试证明这个级数对所有的点z : | z | R 为绝对收敛且一致收敛. 【解】设z 0在收敛圆周上,且 n 0 | c n z 0 n |绝对收敛. 那么对于点z : | z | R ,都有| z | | z 0 |. 因此级数 n 0 | c n z n |收敛,即 n 0 c n z n 绝对收敛. 而由Weierstrass 判别法知知级数 n 0 c n z n 对所有的在闭圆| z | R 上一致收 敛. 6. 写出e z ln(1 + z )的幂级数展式至含z 5项为止,其中ln(1 + z )|z = 0 = 0. 【解】在割去射线L = { z | Im(z ) = 0,Re(z ) 1}的z 平面上,能分出 Ln(1 + z )的无穷多个单值解析分支(Ln(1 + z ))k = ln| (1 + z ) | + i arg(1 + z ) + 2k i ,k .

电磁波动方程和平面电磁波

电磁波动方程和平面电磁波 电工基础教研室周学

本节的研究目的 掌握无源空间线性各向同性均匀介质中波动方程的推导; 掌握等相面,平面波,均匀平面波概念;掌握均匀平面电磁波的基本特征。 本节的研究内容 一、电磁波动方程 二、均匀平面电磁波

波动是电磁场的基本属性当时,电场和磁场相耦合,相互为源,可以脱离电荷、电流,以波的形式存在于空间中。 0/≠??t 0≠??t B 0≠??t E E B 电磁波 ???????=??-?=??-?010******* 22t E c E t H c H

电磁波的波段划分及其应用名称频率范围波长范围典型业务 甚低频VLF[超长波] 3~30KHz100~10km导航,声纳低频LF[长波,LW] 30~300KHz10~1km导航,频标中频MF[中波, MW] 300~3000KHz1km~100m AM, 海上通信高频HF[短波, SW] 3~30MHz100m~10m AM, 通信 甚高频VHF[超短波] 30~300MHz10~1m TV, FM, MC 特高频UHF[微波] 300~3000MHz100~10cm TV, MC, GPS 超高频SHF[微波] 3~30GHz10~1cm通信,雷达 极高频EHF[微波] 30~300GHz10~1mm通信, 雷达 光频[光波] 1~50THz300~0.006 m光纤通信

研究电磁波在空间的传播规律和特性,就是讨论由电磁场基本方程组导出的电磁波动方程在给定条件下的解。

00E H E t H E t H E γεμ????=+???????=-?????=????=?D E B H J E εμγ?=?=??=?在无源空间中,假设媒质是各向同性、线性、均匀的,则 2 2222200H H H t t E E E t t μγμεμγμε????--=?????????--=????无源空间的电磁波动方程,研究电磁波问题的基础

复变函数论 第四章 复级数

第四章 复级数 §1.级数的基本性质 教学目的与要求:了解复数项级数收敛、发散及绝对收敛一致收敛等概念,掌握解析函数项级数的性质. 重点: 解析函数项级数. 难点:一致收敛的函数项级数;解析函数项级数. 课时:2学时 1.复数项级数 定义4.1 复数项级数就是 其中为复数 定义4.2 对于复数项级数,设 若存在,则称级数收敛,否则为发散. 据此定义,我们立即推出:若级数收敛,则 其次,由复数的性质易于推得 定理4.1 设 其中均为实数,则级数收敛的充要条件为基数与均收敛,复数项级数具有与实数项级数完全相同的性质,不再一一给出. 定理4.2(柯西收敛准则)级数收敛的充要条件是,使及,均有定义4.3 若级数收敛,则称级数为绝对收敛. 由关系式及 及定理4.1即可推得. 定理4.3 级数绝对收敛的充要条件为:级数及绝对收敛. 再由定理4.2可知:绝对收敛级数必为.收敛级数. 例1.对于级数当时,由于 , 而当时,,于是 因此级数收敛且有, 显然,当时,级数亦为绝对收敛的级数. 2.复函数项级数 定义4.4设函数在复平面点集上有定义,则称级数 为定义在上的复函数项级数. 定义4.5 设函数在上有定义,如果,级数均收敛于,则称级数收敛于,

或者说级数和函数记作 定义4.6 如果,使得当时,对任一,均有 则称级数在一致收敛于. 与定理4.2类似地我们有 定理4.4 级数在上一致收敛的充要条件是: ,使当时,对任一及均有 由此我们即得一种常用的一致收敛的判别法: 定理4.5 魏尔斯特拉斯-判别法设在点集上有定义 为一收敛正项级数,若在上成立则级数 在上一致收敛于,则在上一致收敛. 与实数项级数一样,不难证明以下定理: 定理4.6 设在复平面点集上连续,级数在上一致收敛于,则在上连续. 定理4.7 设在简单曲线上连续,级数在上一致收敛于,则. 对于复函数项级数的逐项求导问题,我们考虑解析函数项级数,首先,引入一个新概念. 定义4.7 设函数在区域内解析,如果级数在内任一有界闭区域上一致收敛于函数,则称级数在内闭一致收敛于. 由此,我们有下列重要的魏尔斯特拉斯定理. 定理设函数在区域内解析,级数在内中闭一致收敛于函数,则在内解析,且在内成立 证明: ,取,使得.在内任作一条简单闭曲线,根据定理及柯西定理推得.因而由莫勒拉定理知在内解析,再由的任意性即得在内解析. 其次,设的边界,由已知条件得在上一致收敛于,从而 在上一致收敛于,根据定理,我们有 即 于是定理结论成立. 作业:第178页 1. §2幂级数 教学目的与要求:了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法.掌握幂级数在收敛圆内一些基本性质及幂级数在收敛圆周上的性质. 重点: 幂级数收敛半径的求法; 幂级数在收敛圆内一些基本性质. 难点:幂级数在收敛圆周上的性质.

关于复变函数的书pdf

聪哥制作版权所有复变函数 QQ285807093 签署者:ycpan2922 签署日期: 4:32 pm, 3/29/08 http://ycpan.ys168.com

引言 复数是16世纪人们在解代数方程时引入的。在17世纪和18世纪随着微积分的发明与发展,人们研究复变函数,特别是把实变函数初等函数推广到复变数情形,得到一些重要结果。 复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。 复变函数论的发展简况 复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。 复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为

这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。 为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。 后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。 复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。 比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。 复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。 复变函数论的内容 复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函

相关主题