当前位置:文档之家› 10.1压杆稳定的概念

10.1压杆稳定的概念

10.1压杆稳定的概念

10.1压杆稳定的概念

压杆的稳定性验算

建筑力学行动导向教学案例教案提纲

模块七压杆稳定性 7.1压杆稳定的概念 为了说明问题,取如图 7-2 (a)所示的等直细长杆,在其两端施加轴向压力 F ,使杆在直 线状态下处于平衡,此时,如果给杆以微小的侧向干扰力, 使杆发生微小的弯曲,然后撤去干扰 力,贝9当杆承受的轴向压力数值不同时, 其结果也截然不同。当杆承受的轴向压力数值 F 小于某 数值 F cr 时,在撤去干扰力以后, 杆能自动恢复到原有的直线平衡状态而保持平衡, (a)、(b)所示,这种原有的直线平衡状态称为稳定的平衡; 压力F 小于匚 时,杆件就能够保持稳定的平衡,这种性能称为压杆具有稳定性;而当压 F cr 杆所受的轴向压力 F 等于或者大于 F cr 时,杆件就不能保持稳定的平衡而失稳。 压杆经常被应用于各种工程实际中,例如脚手架立杆和基坑支护的支撑杆,均承受压力, 此时必须考虑其稳定性,以免引起压杆失稳破坏。 7.2临界力和临界应力 7.2.1细长压杆临界力计算公式一一欧拉公式 从上面的讨论可知,压杆在临界力作用下,其直线状态的平衡将由稳定的平衡转变为不稳 定的平衡,此时,即使撤去侧向干扰力,压杆仍然将保持在微弯状态下的平衡。当然,如果压力 超过这个临界力,弯曲变形将明显增大。 所以,使压杆 在微弯状态下保持平衡的最小的轴向压力, 即为压杆的临界压力。下面介绍不同约束条件下压杆的临界力计算公式。 一、两端铰支细长杆的临界力计 算公式一一欧拉公式设两端铰支长度 为z 的细长杆,在轴向压力/ cr 的作 用下保持微弯平衡状态,如图 7-3所示。杆在小变形时其挠曲线近似微分方程为: 图7-2 到某一数值匚时,即使撤去干扰力,杆仍然处于微弯形 F cr 状,不能自动恢复到原有的直线平衡状态,如图 7-2 (c)、 (d)所示,则原有的直线平衡状态为 不稳定的平衡。如果力 F 继续增大,则杆继续弯曲, 产生显著的变形,甚至发生突然破坏。 上述现象表明,在轴向压力 F 由小逐渐增大的过程中,压 杆由稳定的平衡转变为不稳定的平衡,这种现象称为压杆 丧失稳定性或者压杆失稳。显然压杆是否失稳取决于轴向 压力的数值,压杆由直线状态的稳定的平衡过渡到不稳定 的平衡时所对应的轴向压力,称为压杆的临界压力或临界 力,用表示 / cr 当压杆所受的轴向 图7-2 如图7-2 图 7-1 F 逐渐增大 当杆承受的轴向压力数值 图7-1

《材料力学》压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π=。

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为:2 2).(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆, 它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ (f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2) .2(l EI P cr π= ?为什么?并由此判断压杆长因数μ是否可能大于2。

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

《压杆稳定》问答题

压杆稳定 【例1】 压杆的压力一旦达到临界压力值,试问压杆是否就丧失了承受荷载的能力? 解:不是。压杆的压力达到其临界压力值,压杆开始丧失稳定,将在微弯形态下保持平衡,即丧失了在直线形态下平衡的稳定性。既能在微弯形态下保持平衡,说明压杆并不是完全丧失了承载能力,只能说压杆丧失了继续增大荷载的能力。但当压杆的压力达到临界压力后,若稍微增大荷载,压杆的弯曲挠度将趋于无限,而导致压溃,丧失了承载能力。且在杆系结构中,由于某一压杆达到临界压力,引起该杆弯曲。若在增大荷载,将引起结构各杆内力的重新分配,从而导致结构的损坏,而丧失其承载能力。因此,压杆的压力达到临界压力时,是其承受荷载的“极限”状态。 【例2】 如何判别压杆在哪个平面内失稳?图示截面形状的压杆,设两端为球铰。试问,失稳时其截面分别绕哪根轴转动? 解:(1)压杆总是在柔度大的纵向平面内失稳。 (2)因两端为球铰,各方向的μ=1,由柔度知l i μλ= (a )x y i i =,在任意方向都可能失稳。 (b ),x y i i <失稳时截面将绕x 轴转动。 (c )x y i i >,失稳时截面将绕y 轴转动。 【例3】 细长压杆的材料宜用高强度钢还是普通钢?为什么? 解:对于细长压杆,其临界压力与材料的强度指标无关,而与材料的弹性模量E 有关。由于高强度钢与普通钢的E 大致相等,而其价格贵于普通钢,故细长压杆的材料宜用普通钢。 【例4】 图示均为圆形截面的细长压杆(λ≥λp),已知各杆所用的材料及直径d 均相同,长度如图。当压力P 从零开始以相同的速率增加时,问哪个杆首先失稳?

1.6a P P 1.3a a P 解:方法一:用公式P lj = π2 EI /(μl )2 计算,由于分子相同,则μl 越大,P lj 越小,杆件越先失稳。 方法二:运用公式P lj =σlj A =π2 EA /λ2 ,分子相同,而λ=μl /i ,i 相同,故μl 越大,λ越大,P lj 越小,杆件越先失稳。 综上可知,杆件是否先失稳,取决于μl 。 图中,杆A :μl =2×a =2 a 杆B :μl =1×1.3a =1.3a 杆C :μl =0.7×1.6a =1.12a 由(μl )A >(μl )B >(μl )C 可知,杆A 首先失稳。 【例5】 松木制成的受压柱,矩形横截面为b ×h =100mm ×180mm ,弹性模量E =10GPa , λP =110,杆长l =7m 。在xz 平面内失稳时(绕y 轴转动),杆端约束为两端固定(图a ),在xy 平面内失稳时(绕z 轴转动),杆端约束为两端铰支(图b )。求木柱的临界应力和临界力。

工程力学第11章-压杆的稳定性问题答案

工程力学第11章-压杆的稳定性问题答案

工程力学(静力学与材料力学)习题详细解答(教师用书) (第11 章) 范钦珊唐静静 2006-12-18

2 第 11 章 压杆的稳定性问题 11-1 关于钢制细长压杆承受轴向压力达到临界载荷之后,还能不能继续承载有如下四 种答案,试判断哪一种是正确的。 (A )不能。因为载荷达到临界值时屈曲位移将无限制地增加; (B )能。因为压杆一直到折断时为止都有承载能力; (C )能。只要横截面上的最大正应力不超过比例极限; 正确答案是 C 。 (D )不能。因为超过临界载荷后,变形不再是弹性的。 11-2 今有两根材料、横截面尺寸及支承情况均相同的压杆.仅知长压杆的长度是短压 杆的长度的两倍。试问在什么条件下短压杆临界力是长压杆临界力的 4 倍?为什么? 解:只有当二压杆的柔度 λ ≥ λ 时,才有题中结论。这是因为,欧拉公式 F = π EI , 只有在弹性范围才成立。这便要求 P λ ≥ λP 。 Pcr (μl ) 2 11-3 图示四根压杆的材料及横截面(直径为 d 的圆截面)均相同,试判断哪一根最容易 失稳,哪一根最不容易失稳。

习题11-3 解:计算各杆之柔度:λ= μl ,各杆之i 相同 i

3 3 (a ) λa = 5l i (μ = 1) (b ) λb (c ) λ = 4.9l i = 4.5l (μ = 0.7) (μ = 0.5) c (d ) λd i = 4l i (μ = 2) 可见 λa > λb > λc > λd ,故(a )最容易失稳,(d )最 不容易失稳。 11-4 三根圆截面压杆的直径均为 d =160mm ,材料均为 A3 钢,E =200GPa ,σs = 240MPa 。已知杆的两端均为铰支,长度分别为 l 1、l 2 及 l 3,且 l 1=2l 2=4l 3 =5m 。试求各杆的临 界力。 解: i = d / 4 = 160 / 4 = 40mm , μ = 1 λ = μl 1 1 i = 5 ×10 40 = 1.25 3 λ = μl 2 2 i μl λ = 3 3 i = 2.5 ×10 40 = 1.25 ×10 40 = 62.5 = 31.5

《材料力学》第9章压杆稳定习题解

第九章压杆稳定习题解 [ 习题9-1] 在§9-2 中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线 形状,导出了临界应力公式 2 EI P cr 。试分析当分别取图b,c,d 所示坐标系及挠曲线形2 l 状时,压杆在F作用下的挠曲线微分方程是否与图 a 情况下的相同,由此所得F cr 公式又cr 是否相同。 解:挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b)图与(a)图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 " M x EIw ( ) 。(c)、(d) 的坐标系相同,它们具有相同的挠曲线微分方程: " M x EIw ( ),显然,这微分方程与(a)的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的 位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即: 2 EI P cr 。 2 l

1

[ 习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图 f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为: 2 EI P cr 。由这公式可知,对于材料和截面相同的压杆,2 ( .l) 它们能承受的压力与原压相的相当长度l 的平方成反比,其中,为与约束情况有关的长度系数。 (a)l 1 5 5m (b)l 0.7 7 4. 9m (c)l 0.5 9 4.5m (d)l 2 2 4m (e)l 1 8 8m (f )l 0.7 5 3.5m (下段);l 0.5 5 2. 5m (上段) 故图 e 所示杆F最小,图 f 所示杆F cr 最大。 cr [ 习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a)的基础放在弹性 地基上,第二根杆(图b)的基础放在刚性地基上。试问两杆的临界力是否均为P cr 2 EI min 2 ( 2.l ) ?为什么?并由此判断压杆长因数是否可能大于2。

《材料力学》压杆稳定习题解

第九章 压杆稳定 习题解 [习题9-1] 在§9-2中已对两端球形铰支的等截面细长压杆,按图a 所示坐标系及挠度曲线形状,导出了临界应力公式2 2l EI P cr π= 。试分析当分别取图b,c,d 所示坐标系及挠曲线形 状时,压杆在cr F 作用下的挠曲线微分方程是否与图a 情况下的相同,由此所得cr F 公式又是否相同。 解: 挠曲线微分方程与坐标系的y 轴正向规定有关,与挠曲线的位置无关。 因为(b )图与(a )图具有相同的坐标系,所以它们的挠曲线微分方程相同,都是 )("x M EIw -=。(c )、(d)的坐标系相同,它们具有相同的挠曲线微分方程:)("x M EIw =,显然,这微分方程与(a )的微分方程不同。 临界力只与压杆的抗弯刚度、长度与两端的支承情况有关,与坐标系的选取、挠曲线的位置等因素无关。因此,以上四种情形的临界力具有相同的公式,即:2 2l EI P cr π=。

[习题9-2] 图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f 所示杆在中间支承处不能转动)? 解:压杆能承受的临界压力为:2 2).(l EI P cr μπ=。由这公式可知,对于材料和截面相同的压杆, 它们能承受的压力与 原压相的相当长度l μ的平方成反比,其中,μ为与约束情况有关的长 度系数。 (a )m l 551=?=μ (b )m l 9.477.0=?=μ (c )m l 5.495.0=?=μ (d )m l 422=?=μ (e )m l 881=?=μ (f )m l 5.357.0=?=μ(下段);m l 5.255.0=?=μ(上段) 故图e 所示杆cr F 最小,图f 所示杆cr F 最大。 [习题9-3] 图a,b 所示的两细长杆均与基础刚性连接,但第一根杆(图a )的基础放在弹性地基上,第二根杆(图b )的基础放在刚性地基上。试问两杆的临界力是否均为2 min 2) .2(l EI P cr π= ?为什么?并由此判断压杆长因数μ是否可能大于2。

!第八章压杆稳定性

15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)? 解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。 15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。 解:(a) 柔度: 230 1500.4 λ?= = 相当长度:20.30.6l m μ=?= (b) 柔度: 150 1250.4 λ?== 相当长度:10.50.5l m μ=?= (c) 柔度: 0.770 122.50.4 λ?= = 相当长度:0.70.70.49l m μ=?= (d) 柔度: 0.590 112.50.4 λ?= = 相当长度:0.50.90.45l m μ=?= (e) 柔度: 145 112.50.4 λ?== 相当长度:10.450.45l m μ=?= 由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。即:() 22 cr EJ P l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为: () 2948 2 2 2 320010 1.610640.617.6410cr EJ P l N π ππμ-??? ??= ==?

() 2948 2 2 2 320010 1.610640.4531.3010cr EJ P l N π ππμ-??? ??= ==? 15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。 解: 92.6 33827452.5 p s s a λπσλ===--=== 15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr P 。若实际作用于挺杆的最大压缩力P =2.33kN ,规定稳定安全系数W n =2~5。试校核此挺杆的稳定性。 解:(1)

第十一章压杆的稳定_工程力学

第十一章 压杆的稳定 承受轴向压力的杆,称为压杆。如前所述,直杆在轴向压力的作用下,发生的是沿轴向的缩短,杆的轴线仍然保持为直线,直至压力增大到由于强度不足而发生屈服或破坏。直杆在轴向压力的作用下,是否发生屈服或破坏,由强度条件确定,这是我们已熟知的。然而,对于一些受轴向压力作用的细长杆,在满足强度条件的情况下,却会出现弯曲变形。杆在轴向载荷作用下发生的弯曲,称为屈曲,构件由屈曲引起的失效,称为失稳(丧失稳定性)。本章研究细长压杆的稳定。 §11.1 稳定的概念 物体的平衡存在有稳定与不稳定的问题。物体的平衡受到外界干扰后,将会偏离平衡状态。若在外界的微小干扰消除后,物体能恢复原来的平衡状态,则称该平衡是稳定的;若在外界的微小干扰消除后物体仍不能恢复原来的平衡状态,则称该平衡是不稳定。如图11.1所示,小球在凹弧面中的平衡是稳定的,因为虚箭头所示的干扰(如微小的力或位移)消除后,小球会回到其原来的平衡位置;反之,小球在凸弧面上的平衡,受到干扰后将不能回复,故其平衡是不稳定的。 上述小球是作为未完全约束的刚体讨论的。对于受到完全约束的变形体,平衡状态也有稳定与不稳定的问题。如二端铰支的受压直杆,如图11.2(a )所示。当杆受到水平方向的微小扰动(力或位移)时,杆的轴线将偏离铅垂位置而发生微小的弯曲,如图11.2(b)所示。若轴向压力F 较小,横向的微小扰动消除后,杆的轴线可恢复原来的铅垂平衡位置,即图11.2(a ),平衡是稳定的;若轴向压力F 足够大,即使 (a ) 稳定平衡 图11.1 稳定平衡与不稳定平衡

微小扰动已消除,在力F 作用下,杆轴线的弯曲挠度也仍将越来越大,如图11.2(c)所示,直至完全丧失承载能力。在F =F cr 的临界状态下,压杆不能恢复原来的铅垂平衡位置,扰动引起的微小弯曲也不继续增大,保持微弯状态的平衡,如图11.2(b)所示,这是不稳定的平衡。如前所述,直杆在轴向载荷作用下发生的弯曲称为屈曲,发生了屈曲就意味着构件失去稳定(失稳)。压杆保持稳定与发生屈曲间的力F cr 称为压杆的临界载荷或临界压力。 建筑物中的立柱、桁架结构中的受压杆、液压装置中的活塞推杆、动力装置中的气门挺杆等都是工程中常见的压杆,细长压杆的稳定是设计中必需考虑的。 §11.2 两端铰支细长压杆的临界载荷 压杆是否能保持稳定,取决于压杆的临界载荷或临界压力F cr 。当F =F cr 时,压杆处于如图11.2(b)所示的微弯平衡状态。现将二端铰支的细长压杆重画于图11.3,用静力学的方法研究其平衡问题。 一、力的平衡 取任一截面,由力的平衡方程可知,杆在任一距原点o 为x 处的弯矩为: M (x )=-Fy 二、物理方程 讨论弹性小变形情况,有线弹性应力-应变关系: (a ) 图11.2 压杆稳定概念 (b) (c) 图11.3 二端铰支的细长压杆

(整理)压杆稳定计算.

第16 章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F 由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F 达到屈服强度载荷F s (或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a 所示的同样粗细而比较长的杆件(图16-1b),当压力F 比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F 逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图 16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的 稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的 O 点处于平衡状态,如图 16-5a 所示。先用外加干 扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。 因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的 O 点处于平衡状态,如图 16-5c 所示。当用外加干 扰力使其偏离原有的平衡位置后, 小球将继续下滚, 不再回到原来的平衡位置。 因此, 小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的 O 点处于平衡状态,如图 16-5b 所示,当用外加干 扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置 O 1 再次处于平 衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡 状态为随遇平衡。 图 16-5 图 16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏 离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于 图 16-3

材料力学 压杆稳定答案

9-1(9-2)图示各杆材料和截面均相同,试问杆能承受的压力哪根最大,哪根最小(图f所示杆在中间支承处不能转动)? 解:对于材料和截面相同的压杆,它们能承受的压力与成反比,此处,为与约束情况有关的长度系数。 (a)=1×5=5m (b)=0.7×7=4.9m (c)=0.5×9=4.5m (d)=2×2=4m (e)=1×8=8m (f)=0.7×5=3.5m 故图e所示杆最小,图f所示杆最大。 返回 9-2(9-5) 长5m的10号工字钢,在温度为时安装在两个固定支座之间, 这时杆不受力。已知钢的线膨胀系数。试问当温度升高至多少度时,杆将丧失稳定? 解:

返回 9-3(9-6) 两根直径为d的立柱,上、下端分别与强劲的顶、底块刚性连接,如图所示。试根据杆端的约束条件,分析在总压力F作用下,立柱可能产生的几种失稳形态下的挠曲线形状,分别写出对应的总压力F之临界值的算式(按 细长杆考虑),确定最小临界力的算式。 解:在总压力F作用下,立柱微弯时可能有下列三种情况: (a)每根立柱作为两端固定的压杆分别失稳: (b)两根立柱一起作为下端固定而上 端自由的体系在自身平面内失稳 失稳时整体在面内弯曲,则1,2两杆 组成一组合截面。 (c)两根立柱一起作为下端固定而上端 自由的体系在面外失稳

故面外失稳时最小 =。 返回 9-4(9-7)图示结构ABCD由三根直径均为d的圆截面钢杆组成,在点B铰支,而在点A和点C固定,D为铰接点,。若结构由于杆件在平面ABCD内弹性失稳而丧失承载能力,试确定作用于结点D处的荷载F的临界值。 解:杆DB为两端铰支,杆DA及DC为一端铰支一端固定,选取。此结构为超静定结构,当杆DB失稳时结构仍能继续承载,直到杆AD及DC也失稳时整个结构才丧失承载能力,故 返回 9-5(9-9) 下端固定、上端铰支、长m的压杆,由两根10号槽钢焊接而成,如图所示,并符合钢结构设计规范中实腹式b类截面中心受压杆的要求。已知杆的材料为Q235钢,强度许用应力,试求压杆的许可荷载。

材料力学压杆稳定概述

第九章压杆稳定 9-1由五根圆截面钢杆组成的正方形平面桁架,杆的直径均为d=40mm,材料的弹性模量E=200GPa, a=1m,试求使结构到达临界状态时的最小荷载。如F力向里作用,则最小荷载又是多少? 答:F t=124kN, F c=350.2kN F 题 9 - 1 图解:当F的杆受压 由静力学平衡方程可知该杆所受压力为 F 294 2 2 200100.04 124 () 124 cr t cr EI F kN l F F kN π π π μ ???? ===∴== 当F 为压力时,长为a的杆受压 由静力学平衡方程可知该杆所受压力为 2 F 294 2 22 200100.04 64248 ()(11) 248 2 350.7 cr c c EI F kN l F kN F kN π π π μ ???? === ? = ∴= 9-2 如图所示细长杆,试判断哪段杆首先失稳。 答:(d) 解:0.5 μ= a 0.7 μ= b 0.7 μ= c 2 μ= d 2 2 () π μ μμμμ = >=> cr d c b a EI F l

crd F ∴最小 ∴d 杆最容易失稳 9-3 试求图示压杆的临界力,材料是HPB235。 答:F cr =19.7kN 题 9 - 3 图 30X 30X 4 解:一端为自由端,一端为固定端,则2μ = 22 ()cr EI F l πμ= 查表可知: 84084 0 2.92100.7710x y I m I m --=?=? 因为最容易失稳的方向是惯性矩最小的方向 所以8400.7710y I I m -==? 298 2 210100.771019.7(20.45) cr F kN π-????∴= =? 9-4两端为球铰的压杆的横截面为图示各种不同形状时,压杆会在哪个平面内失稳(即失稳时,横截面绕哪根轴转动)?

压杆稳定性计算

第16章压杆稳定 16、1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但就是,实践与理论证明,这个结论仅对短粗的压杆才就是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不就是因为强度不够,而就是由于出现了与强度问题截然不同的另一种破坏形式,这就就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但就是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s (或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲与绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性就是指杆件保持原有直线平衡形式的能力。实际上它就是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态就是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态就是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于直线平衡状态的压杆偏离原有的位置,如图16-6a所示。当轴向压力F 由小变大的过程中,可以观察到: 1)当压力值F1较小时,给其一横向干扰力,杆件偏离原来的平衡位置。若去掉横向干扰力后,压杆将在直线平衡位置左右摆动,最终将恢复到原来的直线平衡位置,如图16-6b所示。所以,该杆原有直线平衡状态就是稳定平衡。 2)当压力值F2超过其一限度F cr时,平衡状态的性质发生了质变。这时,只要有一轻微的横向干扰,压杆就会继续弯曲,不再恢复原状,如图16-6d所示。因此,该杆原有直线平衡状态就是不稳定平衡。

压杆稳定

1、( )材料相同的压杆,柔度越大,稳定性越差,故它所能承受的外压力就越小。 1、( )压杆的临界应力是压杆处于临界状态维持直线平衡形式时横截面上的正应力。 2、( )材料相同,柔度相等的压杆,空心杆比实心杆的稳定性好,即空心杆所能承受的压力大。 3、对于压杆稳定,下面错误的伦述是( )。 A 、压杆的临界压力是保持稳定直线平衡的最大载荷。 B 、压杆的柔度越大,压杆越不稳定。 C 、大柔度压杆可以使用欧拉公式计算临界压力。 D 、矩形截面细长压杆,已知Iz>Ir ,计算临界载荷时,应取值Iz 为妥。 5、临界应力是压杆失稳时横截面上的应力( ) 6、示Q235钢压杆,截面为矩形,面积为3.2*103mm 2, 已知E=200GPA ,σs =235MPA ,λp=100,λs=61.6,试计算其临界载荷。(15分) 7、( )压杆的稳定性主要与压杆的截面大小和压杆的长度有关。 一、是非判断题 9.1 所有受力构件都存在失稳的可能性。 ( × ) 9.2 在临界载荷作用下,压杆既可以在直线状态保持平衡,也可以在微弯状态下保持平衡。 ( × ) 9.3 引起压杆失稳的主要原因是外界的干扰力。 ( × ) 9.4 所有两端受集中轴向力作用的压杆都可以采用欧拉公式计算其临界压力。 ( × ) 9.5 两根压杆,只要其材料和柔度都相同,则他们的临界力和临界应力也相同。 ( × ) 9.6 临界压力是压杆丧失稳定平衡时的最小压力值。 ( ∨ ) 9.7 用同一材料制成的压杆,其柔度(长细比)愈大,就愈容易失稳。 ( ∨ ) 9.8 只有在压杆横截面上的工作应力不超过材料比例极限的前提下,才能用欧拉公式计算其 临界压力。 ( × ) 9.9 满足强度条件的压杆不一定满足稳定性条件;满足稳定性条件的压杆也不一定满足强度 条件。 ( ∨ ) 9.10 低碳钢经过冷作硬化能提高其屈服极限,因而用同样的方法也可以提高用低碳钢制成 的细长压杆的临界压力。 ( × ) 二、填空题 9.1 压杆的柔度λ综合地反映了压杆的 对临界应力的影响。 9.2 柔度越大的压杆,其临界应力越 小 ,越 容易 失稳。 9.3 影响细长压杆临界力大小的主要因素有 E , I , μ , l 。 长度(l ),约束(μ),横截 面的形状和大小(i ) 有应力集中时 2 2)(l EI F cr μπ=

材料力学考试习题压杆稳定

压 杆 稳 定 基 本 概 念 题 一、选择题 1. 如果细长压杆有局部削弱,削弱部分对压杆的影响有四种答案,正确的是( )。 A .对稳定性和强度都有影响 B .对稳定性和强度都没有影响 C .对稳定性有影响,对强度没有影响 D .对稳定性没有影响,对强度有影响 2. 图示长方形截面压杆,h /b = 1/2;如果将b 改为h 后仍为细长杆,临界力cr P 是原来的( )倍。 A .2倍 B .4倍 C .8倍 D .16倍 3. 细长压杆,若长度系数μ增加一倍, 则临界压力cr P 的变化是( )。 题2图 A .增加一倍 B .为原来的四倍 C .为原来的四分之一 D .为原来的二分之一 4. 图示四根压杆的材料、截面均相同,它们在纸面内失稳的先后次序是( )。 题4图 A .(a )、(b )、(c )、(d ) B .(d )、(a )、(b )、(c ) C .(c )、(d )、(a )、(b ) D .(b )、(c )、(d )、(a ) 5. 正方形截面杆,横截面边长a 和杆长l 成比例增加,它的长细比( )。 A .成比例增加 B .保持不变 C .按2 ??? ??a l 变化 D .按2 ?? ? ??l a 变化 6. 如图所示直杆,其材料相同,截面和长度相同,支承方式不同,在轴向压力下,他 们的柔度是( )。 A .a λ大,c λ小 B .b λ大,d λ小 C .b λ大,c λ小 D .a λ大,b λ小 -46-

7. 若压杆在两个方向上的约束情况不同,且y μ>z μ。那么该压杆的合理截面应满足的条件是( )。 A .z y I I = B .y I <z I C .y I >z I D .y z λλ= 题6图 8. 两压杆为管状薄壁容器式的细长杆,管两端封闭,且为铰支承。(a )杆无内压,(b ) 杆有内压,其它条件相同。则两杆临界应力的关系是( )。 A .()()b cr a cr σσ= B .()a cr σ>()b cr σ C .()a cr σ<()b cr σ D .无法比较 9. 两根细长杆,直径、约束均相同,但材料不同,且212E E =,则两杆临界应力的关系是( )。 A .()()21cr cr σσ= B .()()212cr cr σσ= C .()()212 1 cr cr σσ= D .()()213cr cr σσ= 10. 由稳定条件][σ?A P ≤,可求[P ],当A 增加—倍时,则[P ]增加的规律有四种答案: A .增加一倍 B .增加二倍 C .增加2 1 倍 D .与A 不成比例 二、判断题(正确的打“√”,错的打“×”) 1. 当压杆的中心压力P 大于临界压力cr P 时,杆原来的直线形式的平衡是 不稳定的平衡。( ) 2. 临界力cr P 只与压杆的长度及两端的支承情况有关。( ) 3. 对于细长压杆,临界压力cr P 的值不应大于比例极限p σ。( ) 4. 压杆的柔度λ与压杆的长度、横截面的形状和尺寸以及两端的支承情况有关。( ) 5. 对压杆进行稳定计算时,公式中压杆的横截面面积A 应采用所谓的“毛面积”。( ) 6. 压杆的长度系数μ与压杆的长度以及横截面的形状和大小有关。( ) 7.计算压杆临界力的欧拉公式2 ) (l EI P cr μπ= 只适用于λ>p λ,的大柔度压杆。( ) -47-

相关主题