当前位置:文档之家› 末次冰期-间冰期旋回朝那黄土颜色特征及古气候意义

末次冰期-间冰期旋回朝那黄土颜色特征及古气候意义

末次冰期-间冰期旋回朝那黄土颜色特征及古气候意义

第四纪地质学考试重点要点

第四纪地质学考试重点 一、名词解释 1、第四纪地质学:是研究在第四纪时期发生在地球表层的各种地质事件及其动力机制的一门学科(是研究第四纪时期的沉积物、地层、生物、气候、冰川、构造运动和地壳发展规律的学科)第四纪:是地球发展历史中距现今最近的一个纪,延续的时间比较短暂,按现今多数从事第四纪地质学研究者的观点,是指距今2.60Ma以来的历史。 2、气候期:是指地质时期某一类气候占优势的时期。 间冰期:是指第四纪气候相对温暖湿润的时期,夹在两个冰期之间。 冰期:是第四纪期间一次气候寒冷的时期,全球性降温,冰川扩大。 3、冰阶:是冰期阶段中冰川发育、气候更为寒冷的阶段。 间冰阶:是冰期中相对温暖冰川退缩的阶段。 4、文化层:是指含有石器、陶器、铜器、铁器和村社遗址等古人类活动遗存的沉积层。 文化期:是指与一定的地区文化遗存特征相对应的时代。 5、米兰科维奇理论:当太阳辐射稳定(太阳常数不变)的情况下,由于其他行星对地球的摄动作用,引起作为流体的地球重力场发生变化,进而使地球的轨道偏心率(e)、地球倾斜度(或黄道面与地球赤道面的交角,简称为黄赤交角,?)和岁差(二分点进动,P)发生周期性变化,从而引起地表吸收的太阳辐射量及其分布产生变化,导致地球气候发生周期性冷暖变化。 6、新构造运动: ①发生于新近纪至第四纪初的构造运动; ②发生于第四纪的构造运动; ③发生于新近纪—现代的构造运动; ④始于上新世,甚至界定具体下界为340万年以来的构造运动; ⑤认为新构造运动不应给予时间限制,凡是造成地表现代地形基本起伏的构造运动都称为新构造运动; ⑥中更新世以来的构造运动。 7、新构造:由新构造运动所造成的(地质)构造变形或变位现象称为新(地质)构造。主要表现在地形、地貌、第四纪及古近纪和新近纪沉积物变形等方面。 活动构造:属于新构造的范畴,或者说是新构造的一个分支,这个概念是在研究地震的过程中提出的。一般认为,活动构造是指晚更新世100~120kaB.P.以来一直在活动,未来一定时期内仍可能发生活动的各种构造,包括活动断裂、活动褶皱、活动盆地及被它们所围限的地壳的岩石圈块体。 8、活动断层:目前认为活动断层是指现代正在活动的断层或100kaB.P以来正在活动的断层,也有定义为全新世,即10kaB.P.以来正在活动和未来100a仍将活动的断层称活动断层,也称最新活动断层。 9、黄土旋回: 冰期旋回: 气候旋回:

时间序列分析

古海洋学 12.740 2004年春季讲义5 冰期/间冰期“摆动”:为什么? 时间序列分析 对于过去700,000年来的气候变化的大致过程,我们已经有了一定的了解。尽管我们能够认识到地理学指标的变化非常有意义,但其绝大部分都具有相似的基本模式。籍由此,我们便可以发问:为什么? 两种途径: 1.“物理学”:由第一定律得到冰期。祝你好运!(如果你能做出结论,记得打电话通知我) 2.“相关性(非因果)”:将由第一定律推知的确定的驱动力与古环境记录之间的相似性(巧合?)寻找出来。根据少量样品得到的一致性只能说是偶然的。如果这些少量数据有价值,那么深究其中的相关机制也就是有意义的。成功的研究方法需要:(1)生物扰动程度较低的可信的古环境证据,(2)古环境记录需要足够长,以使有足够多的旋回可供分析检验。 I。研究简史 A. 1840:Agassiz提出大规模大陆冰川假说;学术论战随之兴起,但最终归结为赞同其观点; B. 1860:Croll提出地球轨道参数的变化对冰川旋回负有一定责任,学界反响强烈,但意见不一; C. 1920:Milankovitch公开量化计算地球轨道参数变更的详细内容,但仍有人不同意该理论; D. 1950:Emiliani给出证明周期性冰期旋回的证据,意图重振Milankovitch学说,但时间尺度的确定仍是最大问题; E. 1960,1970:Barbados群岛分析数据(以及据此得到修正时间尺度)使学界重拾对Milankovitch学说的兴趣,也正是这时候,Milankovitch学说才被学界严肃对待,同时距离被证明仍然遥远; F. 1976:Hays,Imbrie,Shackleton的论文,战胜了学界对轨道影响气候学说的绝大部分反对意见,说明轨道参数变化至少也可以起到冰周期的“带跑者”作用; G. 现在:相对地已经很少有人怀疑地球轨道变化会对气候环境产生影响,因此主要问题就集中在各个参数对不同气候因子的作用到底有多大?在多大程度上气候可以被准确预测?这些轨道动力是否存在显著相关的系统内反映(或称共振)?气候的次轨道大尺度可变性的起源是什么?我们能否利用对古代气候变化的理解,使得对未来气候变化的预测更加准确。 对最后一个问题的注释:气候模型(后文将有详细讨论)往往会论及很多物理学定律(比如:运动定律、动力学定律),但是由于气候体系庞大的复杂性、囿于计算机计算速度,对一些认识较浅和次级尺度的过程,我们不能给出确定性的表述(例如:对流沉积;浮冰形成

第四纪末次间冰期—冰期的气候变化和驱动机制

龙源期刊网 http://www.qikan.com.cn 第四纪末次间冰期—冰期的气候变化和驱动机制 作者:包浪李海平 来源:《城市地理》2017年第09期 摘要:重建第四纪环境使环境演变的时间框架可以建立起来,结合地层层序,可正确的解释地质沉积记录的环境信息,并将这些分散的地质信息记录进行对比。关于第四纪末次间冰期一冰期(130-10KaBP)的气候旋回的研究能比较详细的运用这些不同的方法和手段。本文通 过对末次间冰期一冰期的气候环境的描述,分析此种气候旋回的驱动机制。 关键词:末次间冰期-冰期;气候变化;气候旋回;驱动机制 1.引言 在18世纪末至19世纪早期,欧洲研究者依据阿尔卑斯山和斯堪的纳维亚山地冰川堆积物和基岩、漂砾上发现冰川擦痕远离现代冰川的分布情况,提出了“冰期理论”。最著名的是Penck和Bmckner(1909)对阿尔卑斯4次冰期(玉木、里斯、民德和贡兹)划分规模影响很大。 近年来对深海沉积有孔虫壳体中与冰量变化有关的氧同位素测定与古地磁测年法结合的研究,确定了称为深海氧同位素阶段(MIS)的多次冷期和暖期的交替存在及与之对应的米兰科维奇学说的验证和发展,大大更新了冰期的理论。 在过去的几十年里对末次间冰期一冰期的环境变化进行了大量的研究,积累了丰富的陆地化石、极地冰川和深海沉积氧同位素序列等反映环境变化信息。在这个时间段内,地球经历了暖期和冷期以及一些持续时间较短的气候波动(冰阶和间冰阶),这些环境的演变可以运用各种地质测年的方法来提供过去130KaBP相对可信的证据。 2.第四纪末次间冰期的气候变化 2.1气候状况 末次间冰期的开始表现约130KaBP,结束于约75KaBP,在世界各地有不同的名称,在阿尔卑斯山称为里斯-玉木间冰期,在中国东部称为庐山-大理间冰期。这段时候的气候状况,在深海沉积物、冰芯氧同位素曲线和孢子花粉记录和海平面变化曲线上都有比较明显的反映。大量气候替代性指标表明末次间冰期最暖时,北半球中纬度到高纬度的气候比现代要明显的温暖。 2.2温度记录

第四纪地质学复习

河流下切侵蚀,原来的河谷底部超出一般洪水位之上,呈阶梯状分布在河谷谷坡上,这种地形称为河 流阶地。第四纪地质 第四纪海平面 一、海平面位置确定的标志 1、沉积物标志:泻湖沉积与泥炭、海滩岩 2、地貌标志:海蚀地貌与海积地貌,海蚀穴、海蚀崖、波切台、沿岸沙堤、贝壳堤 3、生物标志:珊瑚礁坪台、有孔虫、介形虫 4、同位素地球化学标志:深海沉积物(有孔虫壳体)中的氧同位素值能反映海平面变化 二、海平面波动原因 1、冰川型海平面变化 由于气候变化导致陆地上冰量的变化而引起的海平面波动 2、构造运动型海平面变化 构造运动可造成全球性或局部的海平面变化 3、其他型海平面变化 水圈体积型海平面变化、大地水准面型海平面变化、海温型海平面变化、洋盆体积型海平面变化、均衡型海平面变化 第四纪生物界 一、第四纪生物界特点 1.北半球的生物界变化比南半球明显 2.陆地上的生物界变化比海洋明显 3.在陆地上,哺乳动物变化最明显,植物变化最小,第四纪期间的植物基本上是现生种,而且在形态上与现在差别不大。 4.哺乳动物演化在第四纪期间最迅速,在第四纪不同时期有明显差别。 5.人类的出现和演化是第四纪的重大事件,相继出现了能人、直立人和智人。 6.从全球动物现代分布来看,越是向南,动物构成越具有原始性 7.由于第四纪气候冷-暖、干-湿剧烈波动,生物在空间上频繁迁移,与前第四纪的生物界明显不同。 二、北方第四纪哺乳动物群 1、早更新世泥河湾动物群 保留了少量新近纪末期的残余种属(德氏后裂爪兽) 演化出一些特别种属,如长鼻三趾马、板齿犀等 出现了更新世特有的种属,如三门马、梅氏犀等 2、中更新世周口店动物群 中更新世哺乳动物南北分异非常明显,周口店动物群具有北方型特点。 早更新世泥河湾期的一些种属部分保留下来 出现了比较多的中更新世特有种属 有大量进步种属出现,比如狼、狐、獾和小型啮齿类 含有北京猿人化石和文化遗迹 3、晚更新世萨拉乌苏动物群 中更新世以前的种类已经灭绝,如中国鬣狗、剑齿虎。 中更新世出现的一些种类高度发展,成为晚更新世的主要种属,数量和体形都增

冰期旋回中碳酸盐岩δ13C变化规律

地球科学原理之15 冰期旋回中碳酸盐岩δ13C变化规律 广东海洋大学 廖永岩 (电子信箱:rock6783@126.com) 现在开始,我们来谈谈冰川的地质作用的地球化学证据。先来了解一下冰期旋回中碳酸盐岩δ13C规律变化的基本规律。 由于关系到人类的生存和可持续性发展,全球变化,已成为当今最热门的话题和研究领域。将古论今,为了更好地了解和研究当今的全球变化,科学家对古冰川进行了大量的研究。在古冰川的研究中,研究者发现,冰川形成过程中,随着δ18O正漂移,碳酸盐岩中δ13C逐渐正漂移,最大值可达+11;当冰川形成到一定程度时,δ13C强烈负漂移,最负值可达-7。紧接着冰碛岩有碳酸盐岩帽形成。随着δ18O出现强烈的负漂移,碳酸盐岩帽里的δ13C从强负值出现强烈正漂移。碳酸盐岩中δ13C的这种规律性漂移,幅度如此之大,是一种十分异常的现象,对此有很多争论(Kimura, et. al., 1997; Kaufman, et. al., 1991; Derry, et. al., 1992; Hoffman, et. al., 1998; Dickens, et. al., 1995; Kennedy, et. al., 2001; Kennett, et. al., 2000; Bains, et. al., 1999; Kennet and Stott, 1991; Zachos, et. al., 1993; Eldholm and Thomas, 1993; Zachos, et. al., 1994)。到目前为止,这种冰川旋回中碳酸盐岩δ13C规律变化,还没有一种能得到学术界公认的详细解释,一直是地学界的不解之谜(杨瑞东等,2003;钱迈平等,2000)。冰川期的旋回,是全球变化的一种重要表征(张兰生等,2000)。同时,冰川期旋回,也基本和造山旋回、成矿旋回、海平面变化旋回、CO2旋回、Er旋回相一致(龚一鸣,1997;汪品先,2002;翟裕生,2001)。这个谜底的揭开,将直接面对以上问题的解决。所以,弄清冰期碳酸盐岩δ13C漂移的原因,是一个既复杂,又重要的问题。我们对现有地质、地球物理学、地球化学、冰川学、气象学等资料进行综合分析后,就这个谜提出了新的理论。 1 δ13C和δ18O的地质学特征 当海洋中的水蒸发时,含δ16O的水较易蒸发,含δ18O的水较不易蒸发。这样,就造成δ18O的分馏。由蒸发的水蒸汽凝聚而成的江河湖里的淡水,δ16O较高,δ18O较低。由蒸发的水蒸汽凝聚而成的极地冰川及山地冰川,δ16O也较高,δ18O较低。而海洋,则由于δ16O的蒸发减少而造成δ18O值升高。江河湖里的水,最终又会流入海洋。库存在江河湖里的淡水量相对较少,且量变化不大。而极地冰川和山地冰川,当冰川形成时,会造成大量淡水的滞留;而冰川消融时,原来滞留在极地和高山的冰川水,又会流入海洋。这样,就造成冰川形成时,海洋δ18O值正漂移,而冰川消融时,δ18O负漂移(Shackbeton, 1973)。自然界中的碳,主要由两种稳定同位素组成,即12C和13C,其丰度分别为98 89%和1.ll% (Hoefs, 1982; Garrels and Lerman, 1984;胡修棉等,2001)。绿色植物进行光合作用时,优先吸收δ12C,造成碳同位素分馏。植物、动物和微生物,都是直接或间接以植物为食的。所以,组成生物的有机碳,相对来说,含δ12C较多,而含δ13C较少。而留在大气或海洋中的CO2,则相对富积δ13C。由生物衍生而来的矿物有机物及天然气水合物等,也和生物相似,具有强烈的δ13C负值,如天然气水合物里的甲烷,δ13C值为-60~-65(杨瑞东等,2003;Kvenvolden, 1995)。从全球角度未说,碳主要分布在几个主要的碳库中,相应的碳同位素值有所不同。碳酸盐岩中的碳同位素相对富13C,δ13C值平均为0‰(相对于PDB标淮,下同)。沉积有机质中的碳δ13C值约为-25‰;大气δ13C值为7‰;大洋水的δ13C 值为0‰;由地球去气作用形成的碳,δ13C约为-7‰(Hoefs, 1982; Garrels and Lerman, 1984; 胡修棉等,2001)。

米兰科维奇理论

米兰科维奇理论 1 1.引言 2 2.作为一种研究范式的米氏理论 3 3.气候变化轨道驱动的若干重要证据 4 4.主要问题与讨论 米兰科维奇理论-1.引言 古气候变化一般被划分成3个时间尺度:构造尺度、轨道尺度和亚轨道尺度,并且每个时间尺度变化各有不同的驱动机制。相比而言,轨道尺度气候变化机制的研究最为深入,这是因为轨道尺度气候变化具有明确的驱动力,即太阳系各星体作用于地球的引力场的周期性摄动,及由此引起的地球轨道参数的周期性变化和到达地球大气圈顶部太阳辐射能量配置的周期性改变。相对气候系统而言,此作用为“外强迫”(external forcing) ,并可在数学上得到较为精确的计算结果。 米兰科维奇理论即是从全球尺度上研究日射量与地球气候之间关系的天文理论。该理论认为,北半球高纬夏季太阳辐射变化(地球轨道偏心率、黄赤交角及岁差等三要素变化引起的夏季日射量变化)是驱动第四纪冰期旋回的主因。这个理论的核心是单一敏感区的触发驱动机制,即北半球高纬气候变化信号被放大、传输进而影响全球。 米兰科维奇理论-2.作为一种研究范式的米氏理论 米氏理论的起点是天文因素变化导致的地球轨道三要素(偏心率、地轴倾斜度、岁差)的周期性变化。地球轨道变化进一步引起地球大气圈顶部太阳辐射纬度配置和季节配置的周期性变化,从而驱动气候波动。但必须指出,如果将一年内大气圈顶部接受的太阳辐射沿不同纬度及不同季节加和的话,则不管轨道要素如何变化,其总量总是基本不变的,而变化的只是其纬度分配和季节分配。这就面临一个核心问题:地球轨道怎样的配置才有利冰期气候的出现? 对此,米兰科维奇的回答是,当地轴倾斜度减小,北半球夏季地球处在远日点时有利于冰期气候的出现。可以看出,这样的轨道要素配置将导致北半球高纬区夏季太阳辐射量的减小。因此,米氏理论可以概括为: 65°N附近夏季太阳辐射变化是驱动第四纪冰期旋回的主因。米氏理论是20世纪40年代提出的。那么,从历史的角度考察,这个理论又是基于当时什么样的观察事实呢? 根据Imbrie和Imbrie的总结,当时的观察事实主要有4 条: 1)冰期旋回过程中,北半球高纬度大陆冰盖的变动幅度远大于南极冰盖;2)大陆冰盖是沿中心向四周扩张的; 3)南北两半球冰盖变化有同时性; 4 ) 全新世开始时间不超过15000aB1P. (尽管当时还没有绝对定年技术) 。这些观察事实颠覆了米兰科维奇之前Croll的冰期旋回天文理论。Croll强调了岁差的重要性,认为当北半球冬季地球处于远日点时,北半球出现冰期气候,而南半球出现间冰期气候。在两半球气候变化基本同时的观察事实面前, Croll的理论被米氏理论所超越。米氏同时通过与柯本和魏格纳的讨论,获得这样的认识:大陆冰盖是否扩张,不取决于冬季积雪量,而取决于夏季的融雪量。因此,米氏理论有3个关键词,分别为北半球、高纬度、夏季。米氏理论的核心是强调了一个敏感区,即北半球高纬区。此区夏季太阳辐射量的减小将触发冰期气候。因此, 可视其为单因素触发模型( single forcing trigger model) 。敏感区内气候变冷后,由于冰雪的高反照率,其信号被进一步放大、传输,进而影响其他地区。米兰科维奇本人在轨道参数变化、太阳辐射能量变化计算的基础上,着重强调了触发机制和冰盖的信号放大机制,但他并没有说明北半球高纬度信号通过什么机制被传输(p ropagation)到其他地区以至实现全球耦合的。这方面工作从20世纪80年代以来,由其他科学家完成。其中最引人瞩目的是强调大气CO2浓度变化和温盐环流变化对北半球高纬信号的传输作用和两半球气候变化的耦合作用。因此,在某种程度上可以这样说,完整的米氏理论是古气候学家集体劳动的成果。 总的看来,着重于解决第四纪冰期旋回动力机制的米氏理论由触发机制、放大机制、传输机制和全球耦合机制这4个部分组成。长期以来,古气候学家在解释古气候记录时,也往往从这个框架出发。因此,米氏理论事实上为古气候学家提供了一种研究范式。 米兰科维奇理论-3.气候变化轨道驱动的若干重要证据 米氏理论之所以能逐渐被接受,主要归功于可用来研究古气候变化的地质资料的获得,其中包括深海岩芯、珊瑚礁、花粉、树木年轮、冰芯等。20世纪60年代,在巴巴多斯岛、夏威夷和新几内亚进行的珊瑚礁研究表明,在距今约8万年、10. 5万年和12. 5万年时期,冰原尺寸缩小,海平面上升到较高水平,且存在一个2. 0~2. 5万年的周期,这与米兰科维奇计算的冰川曲线结果一致。另外,Emilinani从深海岩芯得到的主要反映冰原尺寸变化的氧同位素记录也提供了此类信息。CL IMAP计划,结合几种定年技术,采用功率谱分析等数学方法进行的研究表明,至少地球气候变化的某些周期类型与地球轨道变化有关。1978年, Pi2sias从深海岩芯中测量了碳酸钙、硅、浮游动植物残骸在巴拿马盆地的累积率。硅的累积率反映近地表特殊类别的生物群落的大小,其值随着气候变化而增加或减小。碳化率则反映了底层水对累积的碳酸盐的溶解能力。Pisias通过功率谱分析,从整个气候记录中抽取最强的周期特征,发现碳酸盐和硅的累积率分别表现出一个2. 3

相关主题